dc.contributor.author | Seeliger, Alexander | |
dc.contributor.author | Nolle, Timo | |
dc.contributor.author | Mühlhäuser, Max | |
dc.date.accessioned | 2020-05-25T09:12:27Z | |
dc.date.available | 2020-05-25T09:12:27Z | |
dc.date.issued | 2018-09-09 | |
dc.identifier.uri | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2338 | |
dc.description | The data set contains a set of event logs for evaluating multi-perspective trace clustering approaches in process mining. Event logs were randomly generated from 5 different process models of different complexity levels. The attribute "cluster" refers to the ground truth label. Clusters can only be correctly identified when considering both, the data and the control flow perspective (attributes and trace). | en_US |
dc.relation | IsSupplementTo;DOI;10.1007/978-3-319-98648-7_17 | |
dc.rights | Creative Commons Attribution 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Event log | en_US |
dc.subject | Process mining | en_US |
dc.subject | Synthetic | en_US |
dc.subject | Trace clustering | en_US |
dc.subject.classification | 4.43-06 Datenmanagement, datenintensive Systeme, Informatik-Methoden in der Wirtschaftsinformatik | en_US |
dc.subject.ddc | 004 | |
dc.title | Synthetic event logs for multi-perspective trace clustering | en_US |
dc.type | Dataset | en_US |
tud.project | HMWK/LOEWE | 522/17-04 | DRUP: Deep Reasoning | en_US |
tud.project | Bund/BMBF | 01IS17050 | Software Campus 2.0 | en_US |
tud.history.classification | Version=2020-2024;409-06 Informationssysteme, Prozess- und Wissensmanagement | |