<u>Test Design of the artificial damage tests for the PhD thesis of Yanik</u> <u>Koch – Institute of Product Development and Machine Elements of</u> <u>the Technical University of Darmstadt</u>

Test bench at pmd TU Darmstadt:

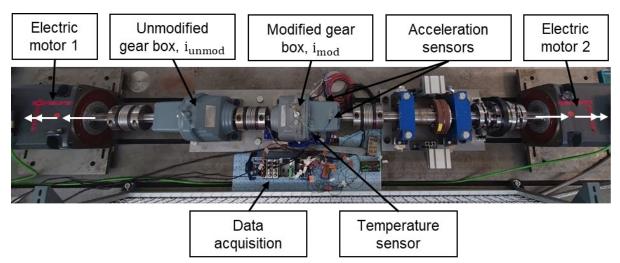
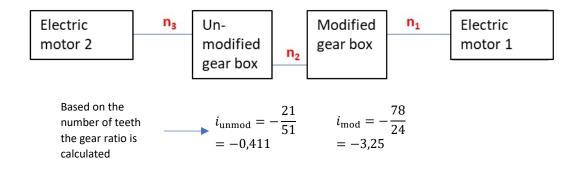



Figure 1: Test bench at pmd TU Darmstadt

- Electric motor 1 is speed controlled
- Electric motor 2 is torque controlled
- The speed and torque direction is defined as shown in Figure 1.
- The gear boxes are RX77/AD4 of SEW

Four quadrants oft the test bench:

Electric Motor 1 is speed controlled and Electric Motor 2 is torque controlled

- Q1: Electric Motor 1 negative speed, Electric Motor 2 positive torque
- Q2: Electric Motor 1 negative speed, Electric Motor 2 negative torque
- Q3: Electric Motor 1 positive speed, Electric Motor 2 negative torque
- Q4: Electric Motor 1 positive speed, Electric Motor 2 positive torque

Sensor integration:

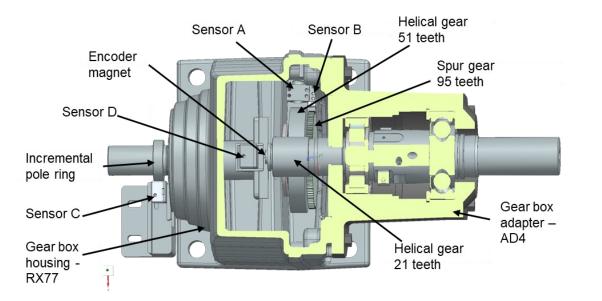


Figure 1: Integration of Magneotresisitive sensors CAD-illustration

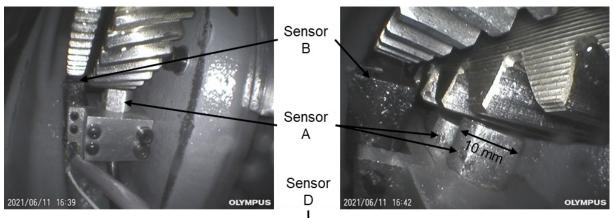


Figure 2: Integration of the magnetoresistive sensors in the gear box

Table 1: Measuring Scale of the magnetoresistive sensors

Sensor	Measuring scale		
A	Helical gear wheel, $z_3 = 51$ teeth		
В	Spur gear, $z_2 = 95$ teeth		
С	Incremental pole ring, $z_1 = 256$ poles		
D	Encoder magnet with north and south pole		

Data acquisition

Table 2: sampling frequency of the NI-DAQ System

Chassis	Analog signals (Sensors B, C, D)	Analog signals (Sensor A)	Digital signals (Sensors C and D)	Acceleration sensors	Temperature Sensor (PT1000)
NI cDAQ	NI9205	NI9215	NI9401	NI9234	NI9215
9178	40kHz per	100kHz per	1MHz per	51,2 kHz per	
	Input	Input	Input	Input	

Data preprocessing

The raw analogue signals are published. The sensors B, C and D generate a sine and cosine signal by design. Sensor A generates one sine signal, to generate a shifted signal two sensors are integrated and the upper one is shifted at 7/4 pitch.

Damages

Damages are artificially milled to the tooth flank. Damages are wrong adjust them!!!!

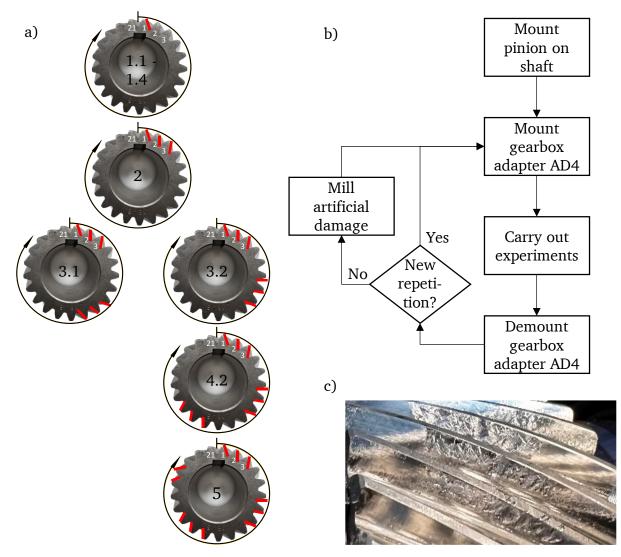


Figure 3: a) Explanation of damage conditions Picture of the artificially damaged gear. Damages as described in table 3.

<u>Test design</u>

Table 3: Operating conditions

	MT Marten Schäffner	BT Pablo de Orte	
Description	Repeatability tests	Extension of test data	
	Pinions 2 and 3	Pinions 5 and 6	
Torque in Nm	20, 55, 85		
Speed in rpm	300, 1300, 2000		
Number of operating	$3(\text{speeds}) \cdot 3(\text{torques}) \cdot 4(\text{quadrants}) = 36$		
conditions			
Damages & Description	0) No damage	0) No damage	
	1.4) Pinion 2 and 3: Grooves	1.4) Grooves along one tooth	
	along one tooth flank	flank	
		2) Grooves along the tooth	
		flank of three adjacent teeth	

	 2) Pinion 2 and 3: Grooves along the tooth flank of three adjacent teeth 3.1) Pinion 1-3: Damage 3 additionally milled at teeth 120° rotated. 	 3.2) Damage 3 90° rotated 4.2) Damage 3 with two adjacent teeth damaged at 180° rotated 5) Damage 3 with two adjacent teeth damaged at 270° rotated
Recording time	5 s	5 s
Number of test conditions	36 OCs · 3(repetitions)	$36 OCs \cdot 6$ (fault conditions)
	\cdot 4(fault conditions	$\cdot 2$ (repetitions) $\cdot 2$ (pinions)
	$\cdot 2(\text{pinions}) = 864$	= 864

Data naming:

The data is named based on the test parameters shown in table 3. Every test combination of speed, torque and damage condition has its own data set containing the previously described sensor data. The data is named as follows: "DamageW_QuadrantX_TrqYNm_RevZrpm". "W" is the damage condition, "X" is the Quadrant, "Y" is the torque in Nm and "Z" is the speed in $\frac{1}{\min}$.