Dataset for Photon Strength Function of ⁹⁶Mo: Experimental Spectra

Supplementary Material to "Exploration of Nuclear-Structure Effects on Averaged Decay Quantities in the Quasicontinuum

Oliver Papst June 25, 2024

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Physics Institut für Kernphysik AG Pietralla

This work is licensed under a Creative Commons "Attribution 4.0 International" license. https://creativecommons.org/licenses/by/4.0/deed.en

Dieses Werk ist lizenziert unter einer Creative Commons "Namensnennung 4.0 International" Lizenz. https://creativecommons.org/licenses/by/4.0/deed.de

Contents

List of Figures		v
1	$\gamma\gamma$ -coincidence spectra and reconstruction of incident spectra of ⁹⁶ Mo	1

List of Figures

⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots \dots$	3
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	4
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots \dots$	5
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on all decays of 2_2^+)	6
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on all decays of 2_2^+)	7
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_3 \rightarrow 2^+_1 \dots \dots$	8
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_4 \rightarrow 2^+_1 \dots \dots$	9
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	10
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots \dots$	11
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	12
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	13
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on all decays of 2_6^+)	14
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on all decays of 2_6^+)	15
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on all decays of 2_6^+)	16
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	17
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	18
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2^+_8 \rightarrow 2^+_3 \dots \dots$	19
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on all decays of 2_8^+)	20
	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}$, $2_1^+ \rightarrow 0_1^+ \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}$, $2_2^+ \rightarrow 2_1^+ \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}$, $2_2^+ \rightarrow 0_1^+$ (gating on all decays of 2_2^+) $\dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}$, $2_2^+ \rightarrow 2_1^+$ (gating on all decays of 2_2^+) $\dots \dots \dots$

1.19	⁹⁶ Mo yy-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	
	all decays of 2_8^+)	21
1.20	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	22
1.21	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots$	23
1.22	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	24
1.23	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 3900 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	25
1.24	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	26
1.25	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \dots$	27
1.26	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots \dots$	28
1.27	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2^+_2)	29
1.28	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2^+_2)	30
1.29	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	31
1.30	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	32
1.31	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	33
1.32	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	34
1.33	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	35
1.34	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	36
1.35	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	37
1.36	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	38
1.37	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	
	all decays of 2_6^+)	39
1.38	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	40
1.39	⁹⁰ Mo yy-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	41
1.40	⁹⁰ Mo yy-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots \dots$	42
1.41	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_8^{+})	43
1.42	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	
1 40	all decays of \mathcal{L}_8)	44
1.43	²⁵ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 0_2^+ \rightarrow 2_1^+ \dots \dots$	45

1.44	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots$	46
1.45	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	47
1.46	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4100 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	48
1.47	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	49
1.48	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \dots$	50
1.49	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	51
1.50	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2^+_2)	52
1.51	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2^+_2)	53
1.52	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	54
1.53	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	55
1.54	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	56
1.55	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	57
1.56	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	58
1.57	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	59
1.58	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	60
1.59	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^{+})	61
1.60	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	60
	all decays of 2_6°	62
1.61	²⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots$	63
1.62	²⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	64
1.63	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	65
1.64	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	~ ~
1.65	all decays of 2_8)	66
1.65	²⁵ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 2_8 \rightarrow 2_3 (gating on all decays of 2^+)$	67
1.((all decays of Z_8)	0/
1.66	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 0_2 \rightarrow 2_1 \dots \dots$	68
1.0/	We we estimate an estimate $E_{\text{beam}} = 4300 \text{ keV}, 1_a \rightarrow 0_1^+ \dots \dots$	09 70
1.68	Mio γγ-coincidence spectra: $E_{\text{beam}} = 4300 \text{ kev}, 1_b \rightarrow 0_1^{-1} \dots$	/0
1.69	²⁵ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 4300 \text{ keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	71

⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_1^+ \rightarrow 0_1^+$		72
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{ keV}, 2^+_2 \rightarrow 0^+_1$		73
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{ keV}, 2_2^+ \rightarrow 2_1^+$		74
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
all decays of 2^+_2)			75
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
all decays of 2^+_2)			76
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_3^+ \rightarrow 2_1^+$		77
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_4^+ \rightarrow 2_1^+$		78
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_5^+ \rightarrow 2_1^+$		79
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_6^+ \rightarrow 0_1^+$		80
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_6^+ \rightarrow 2_1^+$		81
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_2^+$		82
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{ keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
all decays of 2_6^+)			83
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
all decays of 2_6^+)			84
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
all decays of 2_6^+)			85
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_7^+ \rightarrow 2_1^+$		86
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_8^+ \rightarrow 2_1^+$		87
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_8^+ \rightarrow 2_3^+$		88
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	
all decays of 2_8^+)			89
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	
all decays of 2_8^+)			90
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 0_2^+ \rightarrow 2_1^+$		91
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 1_a^+ \rightarrow 0_1^+$		92
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, \ 1_b^+ \rightarrow 0_1^+$		93
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4500 \text{keV}, 3^+_1 \rightarrow 2^+_1$		94
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4700 \text{keV}, 2_1^+ \rightarrow 0_1^+$		95
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4700 \text{keV}, 2_2^+ \rightarrow 0_1^+$		96
⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 4700 \text{keV}, 2_2^+ \rightarrow 2_1^+$		97
	⁹⁶ Mo γγ-coincidence spectra: ⁹⁶ Mo γγ-coincidence spectra: ⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_2) ⁹⁶ Mo γγ-coincidence spectra: ⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_6) ⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_6) ⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_6) ⁹⁶ Mo γγ-coincidence spectra: ⁹⁶ Mo γγ-coincidence spectra:	⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_1^+ \rightarrow 0_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ all decays of 2_2^+) ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ all decays of 2_2^+) ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_3^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_3^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_3^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 4500 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ ⁹⁶ Mo γγ-coincidence spectra:	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_1^+ \rightarrow 0_1^+ \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_2^+ \rightarrow 2_1^+ \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_2^+ \rightarrow 0_1^+$ (gating on all decays of 2_2^+) $\dots \dots \dots \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_2^+ \rightarrow 2_1^+$ (gating on all decays of 2_2^+) $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_3^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_3^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_3^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_6^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_6^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_6^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_6^+ \rightarrow 2_1^+ \dots \dots \dots$ ⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 4500 \text{ keV}$, $2_6^+ \rightarrow 2_1^+ (gating on all decays of 2_6^+) \dots \dots \dots \dots \dots \dots \dots \dots \dots96Mo γγ-coincidence spectra: E_{\text{beam}} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_1^+ (gating on all decays of 2_6^+) \dots \dots96Mo γγ-coincidence spectra: E_{\text{beam}} = 4500 \text{ keV}, 2_6^+ \rightarrow 2_2^+ (gating on all decays of 2_6^+) \dots \dots$

1.96	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$ all decays of $2^+_{\rm c}$)	$_{\text{beam}} = 4700 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	98
1.97	96 Mo vy-coincidence spectra: E_1	$= 4700 \text{ keV}, 2^+_2 \rightarrow 2^+_1$	(gating on	/0
2007	all decays of 2^+_2)	e_{am} $(, \circ \circ n \circ \circ, -2) = 1$		99
1.98	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm h}$	$h_{\text{neam}} = 4700 \text{keV}, 2^+_3 \rightarrow 2^+_1$		100
1.99	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm h}$	$_{\text{neam}} = 4700 \text{keV}, 2_4^+ \rightarrow 2_1^+$		101
1.100	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm h}$	$_{\text{peam}} = 4700 \text{keV}, 2_5^+ \rightarrow 2_1^+$		102
1.101	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm h}$	$_{\text{neam}} = 4700 \text{keV}, 2_6^+ \rightarrow 0_1^+$		103
1.102	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm h}$	$_{\text{peam}} = 4700 \text{keV}, 2_6^+ \rightarrow 2_1^+$		104
1.103	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm h}$	$_{\text{neam}} = 4700 \text{keV}, 2_6^+ \rightarrow 2_2^+$		105
1.104	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm h}$	$_{\text{neam}} = 4700 \text{keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_6^+)	· · · · · · · · · · · · · · · · · · ·		106
1.105	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_6^+)	••••••••••••••		107
1.106	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
	all decays of 2_6^+)	•••••••••••••••	•••••	108
1.107	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_7^+ \rightarrow 2_1^+$		109
1.108	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_8^+ \rightarrow 2_1^+$		110
1.109	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_8^+ \rightarrow 2_3^+$		111
1.110	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_8^+)		•••••	112
1.111	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm b}$	$_{\text{peam}} = 4700 \text{keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	110
1 1 1 0	all decays of Z_8)	47001 17 0+ 0+	•••••	113
1.112	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm b}$	$e_{\text{eam}} = 4/00 \text{ keV}, 0_2^+ \rightarrow 2_1^+$		114
1.113	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm b}$	$h_{\text{peam}} = 4700 \text{keV}, \ I_a \to 0_1^+$		115
1.114	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, \ 1_b^+ \to 0_1^+$		116
1.115	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4700 \text{keV}, 3^+_1 \rightarrow 2^+_1$		117
1.116	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4900 \text{keV}, 2^+_1 \rightarrow 0^+_1$		118
1.117	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4900 \text{keV}, 2_2^+ \rightarrow 0_1^+$		119
1.118	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4900 \text{keV}, 2_2^+ \rightarrow 2_1^+$		120
1.119	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm b}$	$_{\text{beam}} = 4900 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2^+_2)	•••••••••••••		121

1.120	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2^+_2)	· · · · · · · · · · · · · · · · · · ·		122
1.121	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_3^+ \rightarrow 2_1^+$		123
1.122	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_4^+ \rightarrow 2_1^+$		124
1.123	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_5^+ \rightarrow 2_1^+$		125
1.124	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_6^+ \rightarrow 0_1^+$		126
1.125	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_6^+ \rightarrow 2_1^+$		127
1.126	⁹⁶ Mo yy-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{ keV}, 2_6^+ \rightarrow 2_2^+$		128
1.127	⁹⁶ Mo yy-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_6^+)	· · · · · · · · · · · · · · · · · · ·		129
1.128	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_6^+)			130
1.129	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
	all decays of 2_6^+)			131
1.130	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_7^+ \rightarrow 2_1^+$		132
1.131	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_8^+ \rightarrow 2_1^+$		133
1.132	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_8^+ \rightarrow 2_3^+$		134
1.133	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_8^+)			135
1.134	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	
	all decays of 2_8^+)	•••••••••••••••••••••••••••••••••••••••	•••••	136
1.135	⁹⁶ Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 4900 \text{keV}, 0_2^+ \rightarrow 2_1^+$		137
1.136	⁹⁶ Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 4900 \text{keV}, \ 1_a^+ \to 0_1^+$		138
1.137	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 4900 \text{keV}, \ 1_b^+ \rightarrow 0_1^+$		139
1.138	96 Mo $\gamma\gamma$ -coincidence spectra: E	$E_{\text{beam}} = 4900 \text{keV}, 3^+_1 \rightarrow 2^+_1$		140
1.139	96 Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_1^+ \rightarrow 0_1^+$		141
1.140	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_2^+ \rightarrow 0_1^+$		142
1.141	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_2^+ \rightarrow 2_1^+$		143
1.142	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2^+_2)			144
1.143	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2^+_2)	•••••••••••••••	•••••	145
1.144	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 5100 \text{keV}, 2_3^+ \rightarrow 2_1^+$		146

96 Mo wy coincidence spectra: $E_{-} = 5100 \text{ keV} 2^+ \rightarrow 2^+$	1/7
⁹⁶ Ma we coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 2_4 \rightarrow 2_1 \dots \dots$	14/
Mo yy-confidence spectra: $E_{\text{beam}} = 5100 \text{ kev}, 2_5 \rightarrow 2_1 \dots$	148
²⁵ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 2_6^2 \rightarrow 0_1^2 \dots$	149
⁵⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	150
⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	151
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on all decays of 2 ⁺)	152
96 Mo wy coincidence spectra: $E_{-} = E100$ keV 2^+ 2^+ (gating on	152
all decays of 2^+)	153
96 Mo wy coincidence spectra: $E_{-} = 5100$ keV $2^+ \rightarrow 2^+$ (gating on	155
all decays of 2^+)	154
⁹⁶ Mo vy-coincidence spectra: $E_{-} = 5100 \text{ keV} 2^+_{-} \rightarrow 2^+_{-}$	155
⁹⁶ Mo vy-coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV} 2^+_{\text{r}} \rightarrow 2^+_{\text{r}}$	156
⁹⁶ Mo vy-coincidence spectra: $F_{\rm beam} = 5100 \text{keV} 2^+ \rightarrow 2^+$	157
⁹⁶ Mo vy-coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}$, $2_8^+ \rightarrow 2_3^+$ (gating on	107
all decays of 2^+_{a}	158
⁹⁶ Mo vy-coincidence spectra: $E_{\pm} = 5100 \text{ keV} \ 2^+ \rightarrow 2^+$ (gating on	100
all decays of 2^+_{e})	159
⁹⁶ Mo yy-coincidence spectra: $E_{\text{hear}} = 5100 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	160
⁹⁶ Mo yy-coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 1^+_a \rightarrow 0^+_1 \dots \dots$	161
⁹⁶ Mo yy-coincidence spectra: $E_{\text{beam}} = 5100 \text{ keV}, 1_{h}^{+} \rightarrow 0_{1}^{+} \dots \dots$	162
⁹⁶ Mo yy-coincidence spectra: $E_{\text{hearm}} = 5100 \text{ keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	163
⁹⁶ Mo yy-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots \dots$	164
⁹⁶ Mo yy-coincidence spectra: $E_{\text{hearm}} = 5300 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	165
⁹⁶ Mo yy-coincidence spectra: $E_{\text{hearm}} = 5300 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots \dots$	166
⁹⁶ Mo yy-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2^+_2 \rightarrow 0^+_1$ (gating on	
all decays of 2^+_2)	167
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2^+_2 \rightarrow 2^+_1$ (gating on	
all decays of 2^+_2)	168
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	169
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	170
⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 5300 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	171
⁹⁶ Mo yy-coincidence spectra: $E_{\text{heam}} = 5300 \text{ keV}, 2^+_6 \rightarrow 0^+_1 \dots \dots$	172
	⁹⁶ Mo γγ-coincidence spectra: $E_{beam} = 5100 \text{ keV}, 2_{+}^{+} \rightarrow 2_{+}^{+}$

1.171	⁹⁶ Mo γγ-coincidence spectra: E_{beam}	$= 5300 \text{keV}, 2_6^+ \rightarrow 2_1^+$.	1	173
1.172	⁹⁶ Mo γγ-coincidence spectra: E_{beam}	$= 5300 \text{keV}, 2_6^+ \rightarrow 2_2^+$.	1	174
1.173	⁹⁶ Mo γγ-coincidence spectra: E_{beam}	$= 5300 \text{keV}, 2_6^+ \rightarrow 0_1^+ (s_6^+ \rightarrow 0_1^+)$	gating on	
	all decays of 2_6^+)		1	175
1.174	⁹⁶ Mo γγ-coincidence spectra: E_{beam}	$2 = 5300 \mathrm{keV}, 2_6^+ \rightarrow 2_1^+ \mathrm{(g})$	gating on	
	all decays of 2_6^+)		1	176
1.175	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \mathrm{keV}, 2_6^+ \rightarrow 2_2^+ \mathrm{(g})$	ating on	
1 1 7 (all decays of Z_6)		I	
1.176	E_{beam}	$= 5300 \text{keV}, 2_7^+ \rightarrow 2_1^+$.	l	178
1.177	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \text{keV}, 2_8^+ \rightarrow 2_1^+$.	1	179
1.178	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \mathrm{keV}, 2_8^+ \rightarrow 2_3^+$.	1	80
1.179	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \mathrm{keV}, 2_8^+ \rightarrow 2_1^+ \mathrm{(g})$	ating on	01
1 1 0 0	all decays of 2_8)		I	181
1.180	⁵⁰ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \text{keV}, 2_8^+ \rightarrow 2_3^+ (g$	ating on	00
1 1 0 1	96 Mo vy coincidence coetro: <i>E</i>	$- 5200 k_0 V_0^+ \rightarrow 2^+$	1	102
1.101	96 Mo we coincidence spectra. E_{beam}	$-3300 \text{ keV}, 0_2 \rightarrow 2_1$.	1	103
1.102	96 Mo yy-coincidence spectra: E_{beam}	$= 5300 \text{ keV}, 1_a^+ \rightarrow 0_1^+$.	· · · · · 1	184
1.183	Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5300 \text{ keV}, \ 1_b \to 0_1^+ .$	l	185
1.184	E_{beam}	$= 5300 \text{ keV}, 3_1^+ \rightarrow 2_1^+$.	I	180
1.185	$^{\circ}$ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5500 \text{ KeV}, 2_1^+ \rightarrow 0_1^+$.	I	187
1.186	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$= 5500 \text{ keV}, 2_2^+ \rightarrow 0_1^+$.	l	188
1.187	E_{beam}	$2 = 5500 \text{ keV}, 2^+_2 \rightarrow 2^+_1$.	1	189
1.188	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: E_{beam}	$2 = 5500 \mathrm{keV}, 2_2^+ \to 0_1^+ \mathrm{(grad})$	ating on	
1 1 0 0	all decays of Z_2)		···· I	190
1.189	all decays of 2^+)	$= 5500 \text{keV}, Z_2 \rightarrow Z_1^{-1} (g$	ating on 1	91
1 100	96 Mo vy-coincidence spectra: F	$-5500 \text{ keV } 2^+ \rightarrow 2^+$	1	02
1 101	96 Mo wy-coincidence spectra: E_{beam}	$= 5500 \text{ keV}, 2_3 \rightarrow 2_1$.	1	02
1.191	96 Mo yy coincidence spectra: E_{beam}	$= 5500 \text{ keV}, 2_4 \rightarrow 2_1$	1	104
1.192	96 Mo yy coincidence spectra: E_{beam}	$= 5500 \text{ keV}, 2_5 \rightarrow 2_1$.	1	05
1 1 1 0 4	96 Mo wy coincidence spectra. E_{beam}	$-5500 \text{ keV}, 2_6 \rightarrow 0_1$.	1	106
1.194	96 Mo we as a sincidence spectra: E_{beam}	$-5500 \text{ keV}, 2_6 \rightarrow 2_1 .$	I	190
1.195	who $\gamma\gamma$ -confictuence spectra: E_{beam}	$=$ 5500 keV, $Z_6 \rightarrow Z_2$.	1	19/

1.196	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2_6^+)	$v_{\text{beam}} = 5500 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \text{ (gating on } $	198
1.197	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2_6^+)	$t_{\text{beam}} = 5500 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \text{ (gating on } $	199
1.198	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2_6^+)	$t_{\text{beam}} = 5500 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \text{ (gating on } $	200
1.199	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E	$Z_{\text{beam}} = 5500 \text{keV}, 2_7^+ \rightarrow 2_1^+ \dots \dots$	201
1.200	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$z_{\text{beam}} = 5500 \text{keV}, 2_8^+ \rightarrow 2_1^+ \dots \dots$	202
1.201	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E	$z_{\text{beam}}^{+} = 5500 \text{keV}, 2_8^{+} \rightarrow 2_3^{+} \dots \dots$	203
1.202	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2°_{2})	$z_{\text{beam}}^{\text{beam}} = 5500 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \text{ (gating on } z_{10}^+ \text{ (gating on } z$	204
1.203	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2^+_0	$b_{\text{beam}} = 5500 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \text{ (gating on } $	205
1.204	⁹⁶ Mo yy-coincidence spectra: E	$f_{\text{hearm}} = 5500 \text{keV}, 0^+_2 \rightarrow 2^+_1 \ldots \ldots \ldots$	206
1.205	96 Mo yy-coincidence spectra: E	$V_{\text{beam}} = 5500 \text{keV}, 1^+_a \rightarrow 0^+_1 \dots \dots$	207
1.206	96 Mo yy-coincidence spectra: E	$T_{\text{beam}} = 5500 \text{keV}, \ 1_{h}^{+} \rightarrow 0_{1}^{+} \dots \dots$	208
1.207	96 Mo yy-coincidence spectra: <i>E</i>	$f_{\text{beam}} = 5500 \text{keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	209
1.208	96 Mo yy-coincidence spectra: E	$f_{\text{beam}} = 5750 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots \dots$	210
1.209	⁹⁶ Mo γγ-coincidence spectra: E	$f_{\text{beam}} = 5750 \text{keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	211
1.210	⁹⁶ Mo γγ-coincidence spectra: E	$z_{\text{beam}} = 5750 \text{keV}, 2_2^+ \rightarrow 2_1^+ \dots \dots$	212
1.211	⁹⁶ Mo γγ-coincidence spectra: E	$t_{\text{beam}} = 5750 \text{keV}, 2_2^+ \rightarrow 0_1^+ \text{ (gating on })$	
	all decays of 2^+_2)		213
1.212	⁹⁶ Mo γγ-coincidence spectra: E	$C_{\text{beam}} = 5750 \text{keV}, 2_2^+ \rightarrow 2_1^+ \text{ (gating on })$	~
	all decays of 2^+_2)		214
1.213	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: E	$z_{\text{beam}} = 5750 \text{keV}, 2_{1}^{+} \rightarrow 2_{1}^{+} \dots \dots$	215
1.214	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$z_{\text{beam}} = 5750 \text{keV}, 2_4^+ \rightarrow 2_1^+ \dots \dots$	216
1.215	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$z_{\text{beam}} = 5750 \text{keV}, 2_5^+ \rightarrow 2_1^+ \dots \dots$	217
1.216	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$t_{\text{beam}} = 5750 \text{keV}, 2_6^+ \to 0_1^+ \dots \dots$	218
1.217	⁹⁶ Mo γγ-coincidence spectra: E	$C_{\text{beam}} = 5750 \text{keV}, 2_6^+ \to 2_1^+ \dots \dots$	219
1.218	⁹⁶ Mo γγ-coincidence spectra: E	$f_{\text{beam}} = 5750 \text{keV}, 2_6^+ \to 2_2^+ \dots \dots$	220
1.219	⁹⁶ Mo γγ-coincidence spectra: <i>E</i> all decays of 2_6^+)	$U_{\text{beam}} = 5750 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \text{ (gating on } 1)$	221

1.220	⁹⁶ Mo γγ-coincidence spectra: I all decays of 2_6^+)	$E_{\text{beam}} = 5750 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \text{ (gating on } $	222
1.221	⁹⁶ Mo γγ-coincidence spectra: <i>l</i> all decays of 2^+_{ℓ})	$E_{\text{beam}} = 5750 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \text{ (gating on } $	223
1.222	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 2_7^+ \rightarrow 2_1^+ \dots \dots$	224
1.223	⁹⁶ Mo yy-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 2_8^+ \rightarrow 2_1^+ \dots \dots$	225
1.224	⁹⁶ Mo yy-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 2_8^+ \rightarrow 2_3^+ \dots \dots$	226
1.225	⁹⁶ Mo γγ-coincidence spectra: <i>h</i> all decays of 2_8^+)	$E_{\text{beam}} = 5750 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \text{ (gating on } $	227
1.226	⁹⁶ Mo γγ-coincidence spectra: <i>h</i> all decays of 2_8^+)	$E_{\text{beam}} = 5750 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \text{ (gating on } $	228
1.227	⁹⁶ Mo yy-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	229
1.228	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 1_a^+ \to 0_1^+ \dots \dots$	230
1.229	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 1_b^+ \to 0_1^+ \dots \dots \dots$	231
1.230	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 5750 \text{keV}, 3_1^+ \rightarrow 2_1^+ \dots \dots$	232
1.231	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 2_1^+ \rightarrow 0_1^+ \dots \dots$	233
1.232	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 2_2^+ \to 0_1^+ \dots \dots$	234
1.233	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 2_2^+ \to 2_1^+ \dots \dots$	235
1.234	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \text{ (gating on }$	
	all decays of 2^+_2)		236
1.235	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>l</i> all decays of 2 ⁺)	$E_{\text{beam}} = 6000 \text{keV}, 2_2^+ \rightarrow 2_1^+ \text{ (gating on }$	237
1 236	96 Mo vy-coincidence spectra: 1	$E_{\rm c} = 6000 \rm keV 2^+ \rightarrow 2^+$	238
1 237	⁹⁶ Mo vy-coincidence spectra: 1	$E_{\text{beam}} = 6000 \text{ keV}, 2_3^+ \rightarrow 2_1^+$	239
1.238	⁹⁶ Mo vy-coincidence spectra: <i>1</i>	$E_{\text{beam}} = 6000 \text{ keV} 2^+_4 \rightarrow 2^+_1$	240
1.239	⁹⁶ Mo vy-coincidence spectra: <i>1</i>	$E_{\rm h} = 6000 \text{keV}, 2^+_5 \to 0^+_1 \dots \dots$	241
1.240	⁹⁶ Mo vv-coincidence spectra: <i>I</i>	$E_{1} = 6000 \text{ keV}, 2^{+}_{1} \rightarrow 2^{+}_{1} \dots \dots$	242
1.241	⁹⁶ Mo vv-coincidence spectra: <i>I</i>	$E_{1} = 6000 \text{ keV}, 2^{+}_{6} \rightarrow 2^{+}_{7} \dots \dots$	243
1.242	⁹⁶ Mo vy-coincidence spectra: <i>I</i>	$E_{\rm r} = 6000 \text{keV}, 2^+_{\rm r} \rightarrow 0^+_{\rm r} \text{ (gating on}$	
	all decays of 2_6^+)		244
1.243	⁹⁶ Mo γγ-coincidence spectra: l all decays of 2_6^+)	$E_{\text{beam}} = 6000 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \text{ (gating on } $	245

1.244	⁹⁶ Mo γγ-coincidence spectra: J all decays of 2 ⁺)	$E_{\text{beam}} = 6000 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \text{ (gating on)}$	246
1.245	96 Mo vv-coincidence spectra: 1	$E_{\text{hom}} = 6000 \text{keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	247
1.246	⁹⁶ Mo yy-coincidence spectra:	$E_{\text{heam}} = 6000 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots \dots$	248
1.247	⁹⁶ Mo yy-coincidence spectra: 1	$E_{\text{beam}} = 6000 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots \dots$	249
1.248	⁹⁶ Mo γγ-coincidence spectra: $\frac{1}{2}$ all decays of 2^+_8)	$E_{\text{beam}} = 6000 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \text{ (gating on }$	250
1.249	⁹⁶ Mo γγ-coincidence spectra: 1 all decays of 2_8^+)	$E_{\text{beam}} = 6000 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \text{ (gating on }$	251
1.250	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 0_2^+ \to 2_1^+ \dots \dots$	252
1.251	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6000 \text{keV}, 1_a^+ \to 0_1^+ \dots \dots$	253
1.252	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 1_b^+ \to 0_1^+ \dots \dots$	254
1.253	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6000 \text{keV}, 3_1^+ \rightarrow 2_1^+ \dots \dots$	255
1.254	⁹⁶ Mo γγ-coincidence spectra: 1	$E_{\text{beam}} = 6250 \text{keV}, 2_1^+ \to 0_1^+ \dots \dots$	256
1.255	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6250 \text{keV}, 2_2^+ \to 0_1^+ \dots \dots$	257
1.256	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6250 \text{keV}, 2_2^+ \to 2_1^+ \dots \dots$	258
1.257	⁹⁶ Mo γγ-coincidence spectra: 1 all decays of 2^+_2)	$E_{\text{beam}} = 6250 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \text{ (gating on }$	259
1.258	⁹⁶ Mo γγ-coincidence spectra: 1 all decays of 2^+_2)	$E_{\text{beam}} = 6250 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \text{ (gating on }$	260
1.259	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6250 \text{keV}, 2_3^+ \to 2_1^+ \dots \dots$	261
1.260	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6250 \text{keV}, 2_4^+ \rightarrow 2_1^+ \dots \dots$	262
1.261	⁹⁶ Mo γγ-coincidence spectra: 1	$E_{\text{beam}} = 6250 \text{keV}, 2_5^+ \rightarrow 2_1^+ \dots \dots$	263
1.262	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6250 \text{keV}, 2_6^+ \to 0_1^+ \dots \dots$	264
1.263	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6250 \text{keV}, 2_6^+ \rightarrow 2_1^+ \dots \dots$	265
1.264	⁹⁶ Mo γγ-coincidence spectra: <i>I</i>	$E_{\text{beam}} = 6250 \text{keV}, 2_6^+ \rightarrow 2_2^+ \dots \dots$	266
1.265	⁹⁶ Mo γγ-coincidence spectra: 1	$E_{\text{beam}} = 6250 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \text{ (gating on }$	
	all decays of 2_6^+)		267
1.266	⁹⁶ Mo γγ-coincidence spectra: I all decays of 2_6^+)	$E_{\text{beam}} = 6250 \text{ keV}, \ 2_6^+ \rightarrow 2_1^+ \text{ (gating on } $	268
1.267	⁹⁶ Mo γγ-coincidence spectra: 1 all decays of 2_6^+)	$E_{\text{beam}} = 6250 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \text{ (gating on } $	269
1.268	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6250 \text{keV}, 2_7^+ \to 2_1^+ \dots \dots$	270

1.269	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	271
1.270	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	272
1.271	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_8^+)	273
1.272	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	~ - ·
	all decays of 2_8^+)	274
1.273	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	275
1.274	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots \dots$	276
1.275	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	277
1.276	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6250 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	278
1.277	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots \dots$	279
1.278	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots$	280
1.279	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	281
1.280	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2^+_2 \rightarrow 0^+_1$ (gating on	
	all decays of 2^+_2)	282
1.281	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2^+_2 \rightarrow 2^+_1$ (gating on	
	all decays of 2^+_2)	283
1.282	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	284
1.283	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	285
1.284	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	286
1.285	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	287
1.286	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	288
1.287	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	289
1.288	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	290
1.289	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	291
1.290	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	
	all decays of 2_6^+)	292
1.291	⁵⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	293
1.292	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	294
1.293	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 6500 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	295

1.294	⁹⁶ Mo γγ-coincidence spectra: all decays of 2_8^+)	$E_{\text{beam}} = 6500 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \text{ (gating on } $	296
1.295	⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_{-}	$E_{\text{beam}} = 6500 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \text{ (gating on)}$	297
1.296	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{heam}} = 6500 \text{keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	298
1.297	⁹⁶ Mo yy-coincidence spectra:	$E_{\text{beam}} = 6500 \text{ keV}, \ 1_a^+ \to 0_1^+ \dots \dots$	299
1.298	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6500 \text{ keV}, \ 1_{h}^{+} \rightarrow 0_{1}^{+} \dots \dots$	300
1.299	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6500 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots \dots$	301
1.300	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_1^+ \to 0_1^+ \dots \dots$	302
1.301	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_2^+ \to 0_1^+ \dots \dots$	303
1.302	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_2^+ \to 2_1^+ \ldots \ldots$	304
1.303	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_2^+ \rightarrow 0_1^+ \text{ (gating on }$	
	all decays of 2^+_2)	•••••••••••••••••••••••	305
1.304	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: all decays of 2^+_2)	$E_{\text{beam}} = 6750 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \text{ (gating on}$	306
1.305	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_3^+ \rightarrow 2_1^+ \ldots \ldots$	307
1.306	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_4^+ \rightarrow 2_1^+ \dots \dots$	308
1.307	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_5^+ \rightarrow 2_1^+ \dots \dots$	309
1.308	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_6^+ \to 0_1^+ \dots \dots$	310
1.309	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_6^+ \rightarrow 2_1^+ \dots \dots$	311
1.310	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 6750 \text{keV}, 2_6^+ \rightarrow 2_2^+ \dots \dots$	312
1.311	⁹⁶ Mo γγ-coincidence spectra: all decays of 2_6^+)	$E_{\text{beam}} = 6750 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \text{ (gating on}$	313
1.312	⁹⁶ Mo γγ-coincidence spectra: all decays of 2_6^+)	$E_{\text{beam}} = 6750 \text{keV}, 2_6^+ \rightarrow 2_1^+ \text{ (gating on } $	314
1.313	⁹⁶ Mo γγ-coincidence spectra: all decays of 2^+_{ϵ})	$E_{\text{beam}} = 6750 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \text{ (gating on }$	315
1.314	⁹⁶ Mo vy-coincidence spectra:	$E_{1} = 6750 \text{keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	316
1.315	⁹⁶ Mo vy-coincidence spectra:	$E_{1} = 6750 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots$	317
1.316	⁹⁶ Mo vy-coincidence spectra:	$E_{1} = 6750 \text{ keV}, 2^{+}_{2} \rightarrow 2^{+}_{2}, \dots$	318
1.317	⁹⁶ Mo yy-coincidence spectra:	$E_{\text{hearm}} = 6750 \text{ keV}, 2^\circ_{\text{e}} \rightarrow 2^\circ_{\text{t}}$ (gating on	-
	all decays of 2_8^+)		319

1.318	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 6750 \text{keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	
	all decays of 2_8^+)	· · · · · · · · · · · · · · · · · · ·		320
1.319	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 6750 \text{keV}, 0_2^+ \rightarrow 2_1^+$		321
1.320	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 6750 \text{keV}, 1_a^+ \to 0_1^+$		322
1.321	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 6750 \text{keV}, 1_b^+ \to 0_1^+$		323
1.322	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 6750 \text{keV}, 3_1^+ \rightarrow 2_1^+$		324
1.323	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_1^+ \rightarrow 0_1^+$		325
1.324	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_2^+ \rightarrow 0_1^+$		326
1.325	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_2^+ \rightarrow 2_1^+$		327
1.326	⁹⁶ Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2^+_2)			328
1.327	96 Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2^+_2)			329
1.328	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_3^+ \rightarrow 2_1^+$		330
1.329	⁹⁶ Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_4^+ \rightarrow 2_1^+$		331
1.330	⁹⁶ Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_5^+ \rightarrow 2_1^+$		332
1.331	96 Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \to 0_1^+$		333
1.332	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \rightarrow 2_1^+$		334
1.333	96 Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \rightarrow 2_2^+$		335
1.334	96 Mo γγ-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_6^+)			336
1.335	96 Mo γγ-coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_6^+)			337
1.336	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
	all decays of 2_6^+)			338
1.337	90 Mo yy-coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_7^+ \rightarrow 2_1^+$		339
1.338	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_8^+ \to 2_1^+$		340
1.339	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: <i>E</i>	$E_{\text{beam}} = 7000 \text{keV}, 2_8^+ \rightarrow 2_3^+$		341
1.340	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: E	$E_{\text{beam}} = 7000 \text{keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	~ . ~
	all decays of 2_8^+)	+ - + - +	••••	342
1.341	\sim Mo yy-coincidence spectra: E	$\dot{z}_{\text{beam}} = 7000 \text{keV}, 2_8^+ \to 2_3^+$	(gating on	040
1 0 4 0	all decays of \angle_8 <i>j</i>		• • • • • •	343
1.342	\sim Mo $\gamma\gamma$ -coincidence spectra: E	$z_{\text{beam}} = 7000 \text{keV}, 0_2^+ \rightarrow 2_1^+$		344

1.343	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7000 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots$	345
1.344	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7000 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	346
1.345	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7000 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	347
1.346	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	348
1.347	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	349
1.348	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	350
1.349	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2^+_2)	351
1.350	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2^+_2 \rightarrow 2^+_1$ (gating on	
	all decays of 2^+_2)	352
1.351	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	353
1.352	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	354
1.353	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	355
1.354	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	356
1.355	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	357
1.356	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	358
1.357	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	359
1.358	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	360
1.359	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	0.61
	all decays of $2_6'$)	361
1.360	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots$	362
1.361	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	363
1.362	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	364
1.363	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	o (=
1.064	all decays of 2_8^{\prime})	365
1.364	²⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 2_8^{+} \rightarrow 2_3^{+}$ (gating on	266
1.0(5	all decays of Z_8)	300
1.365	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 0_2 \rightarrow 2_1 \dots \dots$	36/
1.366	Mio γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 1_a \rightarrow 0_1^+ \dots \dots$	368
1.367	²⁶ Nio $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	369
1.368	[×] Mo γγ-coincidence spectra: $E_{\text{beam}} = 7250 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots \dots$	370

1.369	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	371
1.370	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \dots$	372
1.371	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	373
1.372	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2^+_2)	374
1.373	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2^+_2)	375
1.374	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	376
1.375	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	377
1.376	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	378
1.377	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	379
1.378	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	380
1.379	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	381
1.380	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	382
1.381	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	383
1.382	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	
	all decays of 2_6^+)	384
1.383	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	385
1.384	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	386
1.385	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	387
1.386	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_8^+)	388
1.387	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	
	all decays of 2_8^+)	389
1.388	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	390
1.389	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots \dots$	391
1.390	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots \dots$	392
1.391	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 7500 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	393
1.392	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7750 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	394
1.393	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7750 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots$	395
1.394	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 7750 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	396

1.395	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_2)			397
1.396	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: E_{be}	$_{\rm am} = 7750 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	000
	all decays of 2_2)			398
1.397	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\rm be}$	$_{\rm am} = 7750 \text{keV}, 2^+_3 \rightarrow 2^+_1$		399
1.398	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2^+_4 \rightarrow 2^+_1$		400
1.399	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2^+_5 \rightarrow 2^+_1$		401
1.400	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 \text{keV}, 2_6^+ \rightarrow 0_1^+$		402
1.401	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_6^+ \rightarrow 2_1^+$		403
1.402	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_6^+ \rightarrow 2_2^+$		404
1.403	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_6^+)			405
1.404	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_6^+)			406
1.405	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
	all decays of 2_6^+)			407
1.406	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_7^+ \rightarrow 2_1^+$		408
1.407	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2^+_8 \rightarrow 2^+_1$		409
1.408	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_8^+ \rightarrow 2_3^+$		410
1.409	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_8^+)			411
1.410	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	
	all decays of 2_8^+)			412
1.411	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 0^+_2 \rightarrow 2^+_1$		413
1.412	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, \ 1_a^+ \rightarrow 0_1^+$		414
1.413	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, \ 1_b^+ \rightarrow 0_1^+$		415
1.414	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 7750 {\rm keV}, 3^+_1 \rightarrow 2^+_1$		416
1.415	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 8000 \rm keV, 2^+_1 \rightarrow 0^+_1$		417
1.416	⁹⁶ Mo γγ-coincidence spectra: E_{be}	$_{\rm am} = 8000 {\rm keV}, 2_2^+ \rightarrow 0_1^+$		418
1.417	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm be}$	$_{\rm am} = 8000 {\rm keV}, 2^+_2 \rightarrow 2^+_1$		419
1.418	⁹⁶ Mo γγ-coincidence spectra: $E_{\rm be}$	$_{am} = 8000 \text{ keV}, 2^{+}_{2} \rightarrow 0^{+}_{1}$	(gating on	
	all decays of 2^+_2)			420

1.419	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2^+_2)	· · · · · · · · · · · · · · · · · · ·		421
1.420	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_3^+ \rightarrow 2_1^+$		422
1.421	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_4^+ \rightarrow 2_1^+$		423
1.422	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_5^+ \rightarrow 2_1^+$		424
1.423	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_6^+ \rightarrow 0_1^+$		425
1.424	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_6^+ \rightarrow 2_1^+$		426
1.425	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_6^+ \rightarrow 2_2^+$		427
1.426	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_6^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2_6^+)	· · · · · · · · · · · · · · · · · · ·		428
1.427	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_6^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_6^+)			429
1.428	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_6^+ \rightarrow 2_2^+$	(gating on	
	all decays of 2_6^+)	•••••		430
1.429	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_7^+ \rightarrow 2_1^+$		431
1.430	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_8^+ \rightarrow 2_1^+$		432
1.431	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 2_8^+ \rightarrow 2_3^+$		433
1.432	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_8^+ \rightarrow 2_1^+$	(gating on	
	all decays of 2_8^+)	••••••••••••••••		434
1.433	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 2_8^+ \rightarrow 2_3^+$	(gating on	
	all decays of 2_8^+)	••••••••••••		435
1.434	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 8000 \text{ keV}, 0^+_2 \rightarrow 2^+_1$		436
1.435	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, \ 1_a^+ \to 0_1^+$		437
1.436	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, \ 1_b^+ \to 0_1^+$		438
1.437	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 8000 \text{keV}, 3^+_1 \rightarrow 2^+_1$		439
1.438	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra:	$E_{\text{beam}} = 8250 \text{keV}, 2_1^+ \rightarrow 0_1^+$		440
1.439	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8250 \text{ keV}, \ 2_2^+ \rightarrow 0_1^+$		441
1.440	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8250 \text{ keV}, 2_2^+ \rightarrow 2_1^+$		442
1.441	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8250 \text{keV}, 2_2^+ \rightarrow 0_1^+$	(gating on	
	all decays of 2^+_2)	••••••		443
1.442	⁹⁶ Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8250 \text{keV}, 2_2^+ \rightarrow 2_1^+$	(gating on	
.	all decays of 2^+_2)			444
1.443	^ν Mo γγ-coincidence spectra:	$E_{\text{beam}} = 8250 \text{ keV}, 2_3^+ \rightarrow 2_1^+$		445

1 4 4 4	⁹⁶ Mo vy-coincidence spectra: $F_{\rm e} = 8250 \text{keV} 2^+ \rightarrow 2^+$	446
1 445	⁹⁶ Mo vy-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2^+ \rightarrow 2^+$	447
1 446	⁹⁶ Mo vy-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2^+ \rightarrow 0^+$	448
1 1 1 1 7	⁹⁶ Mo yy coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \cdots \cdots \cdots$	110
1.777	⁹⁶ Mo wy coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_6 \Rightarrow 2_1 \dots$	450
1.440	Mo $\gamma\gamma$ -concluence spectra. $E_{\text{beam}} = 8250 \text{ keV}, 2_6 \rightarrow 2_2 \dots \dots$	430
1.449	all decays of 2_6^+)	451
1.450	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	452
1.451	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	
	all decays of 2_6^+)	453
1.452	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots$	454
1.453	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	455
1.454	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	456
1.455	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_8^+)	457
1.456	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	
	all decays of 2_8^+)	458
1.457	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots$	459
1.458	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots$	460
1.459	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	461
1.460	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8250 \text{ keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	462
1.461	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2^+_1 \rightarrow 0^+_1 \dots \dots$	463
1.462	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	464
1.463	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots \dots$	465
1.464	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2^+_2 \rightarrow 0^+_1$ (gating on	
	all decays of 2^+_2)	466
1.465	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2^+_2)	467
1.466	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	468
1.467	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	469
1.468	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	470
1.469	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	471

1.470	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	472
1.471	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	473
1.472	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	474
1.473	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_6^+)	475
1.474	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	170
4 4	all decays of 2_6)	4/6
1.475	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_7 \rightarrow 2_1 \dots$	477
1.476	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	478
1.477	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	479
1.478	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	40.0
	all decays of 2_8^{\prime})	480
1.479	²⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 2_8^{+} \rightarrow 2_3^{+}$ (gating on	401
1 400	$\frac{96}{10} \text{ Me any point of a maximum } E = \frac{9500 \text{ keV}}{100 \text{ keV}} \text{ and } 2^{+}$	401
1.480	Mo yy-concidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 0_2 \rightarrow 2_1 \dots \dots$	482
1.481	⁹⁶ No $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 1_a \rightarrow 0_1 \dots \dots$	483
1.482	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, \ 1_{b}^{+} \rightarrow 0_{1}^{+} \dots \dots$	484
1.483	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8500 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	485
1.484	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_1^+ \rightarrow 0_1^+ \dots$	486
1.485	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	487
1.486	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	488
1.487	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2^+_2 \rightarrow 0^+_1$ (gating on	
	all decays of 2^+_2)	489
1.488	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2^+_2 \rightarrow 2^+_1$ (gating on	400
1 400	all decays of 2_2)	490
1.489	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	491
1.490	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_4^+ \rightarrow 2_1^+ \dots$	492
1.491	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	493
1.492	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots$	494
1.493	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	495
1.494	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	496

1.495	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on all decays of 2_6^+)	497
1.496	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on all decays of 2_6^+)	498
1.497	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on all decays of 2_6^+)	499
1.498	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2^+_7 \rightarrow 2^+_1 \dots \dots$	500
1.499	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	501
1.500	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots \dots$	502
1.501	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on all decays of 2_8^+)	503
1.502	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on all decays of 2_8^+)	504
1.503	⁹⁶ Mo yy-coincidence spectra: $E_{\text{hearm}} = 8750 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	505
1.504	⁹⁶ Mo yy-coincidence spectra: $E_{\text{heam}} = 8750 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots \dots$	506
1.505	⁹⁶ Mo yy-coincidence spectra: $E_{\text{heam}} = 8750 \text{ keV}, 1_{h}^{+} \rightarrow 0_{1}^{+} \dots \dots$	507
1.506	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 8750 \text{ keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	508
1.507	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2^+_1 \rightarrow 0^+_1 \dots \dots$	509
1.508	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2^+_2 \rightarrow 0^+_1 \dots \dots$	510
1.509	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2^+_2 \rightarrow 2^+_1 \dots \dots$	511
1.510	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2^+_2 \rightarrow 0^+_1$ (gating on	
	all decays of 2^+_2)	512
1.511	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_2^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2^+_2)	513
1.512	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_3^+ \rightarrow 2_1^+ \dots$	514
1.513	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2^+_4 \rightarrow 2^+_1 \dots \dots$	515
1.514	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_5^+ \rightarrow 2_1^+ \dots$	516
1.515	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 0_1^+ \dots \dots$	517
1.516	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 2_1^+ \dots$	518
1.517	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	519
1.518	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2_6^+)	520

1.519	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on all decays of 2_6^+)	521
1.520	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on all decays of 2_2^+)	522
1.521	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{heam}} = 9000 \text{ keV}, 2_7^+ \rightarrow 2_1^+ \dots$	523
1.522	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	524
1.523	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	525
1.524	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on all decays of 2_8^+)	526
1.525	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on all decays of 2_8^+)	527
1.526	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	528
1.527	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots \dots$	529
1.528	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots \dots$	530
1.529	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9000 \text{ keV}, 3^+_1 \rightarrow 2^+_1 \dots \dots$	531
1.530	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2^+_1 \rightarrow 0^+_1 \dots \dots$	532
1.531	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_2^+ \rightarrow 0_1^+ \dots \dots$	533
1.532	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_2^+ \rightarrow 2_1^+ \dots$	534
1.533	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_2^+ \rightarrow 0_1^+$ (gating on	
	all decays of 2^+_2)	535
1.534	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2^+_2 \rightarrow 2^+_1$ (gating on	506
1 505	all decays of Z_2)	536
1.535	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ KeV}, 2_3 \rightarrow 2_1 \dots$	53/
1.536	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_4 \rightarrow 2_1 \dots$	538
1.537	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_5^- \rightarrow 2_1^- \dots$	539
1.538	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^{-} \rightarrow 0_1^{-} \dots \dots$	540
1.539	²⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^{\prime} \rightarrow 2_1^{\prime} \dots$	541
1.540	⁹⁰ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^+ \rightarrow 2_2^+ \dots$	542
1.541	⁹⁶ Mo $\gamma\gamma$ -coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^+ \rightarrow 0_1^+$ (gating on all decays of 2_6^+)	543
1.542	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^+ \rightarrow 2_1^+$ (gating on all decays of 2_6^+)	544

1.543	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_6^+ \rightarrow 2_2^+$ (gating on	
	all decays of 2_6^+)	545
1.544	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_7^+ \rightarrow 2_1^+ \dots$	546
1.545	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_8^+ \rightarrow 2_1^+ \dots$	547
1.546	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_8^+ \rightarrow 2_3^+ \dots$	548
1.547	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_8^+ \rightarrow 2_1^+$ (gating on	
	all decays of 2_8^+)	549
1.548	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 2_8^+ \rightarrow 2_3^+$ (gating on	
	all decays of 2^+_8)	550
1.549	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 0^+_2 \rightarrow 2^+_1 \dots \dots$	551
1.550	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 1_a^+ \rightarrow 0_1^+ \dots$	552
1.551	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 1_b^+ \rightarrow 0_1^+ \dots$	553
1.552	⁹⁶ Mo γγ-coincidence spectra: $E_{\text{beam}} = 9250 \text{ keV}, 3_1^+ \rightarrow 2_1^+ \dots$	554

1 γγ-coincidence spectra and reconstruction of incident spectra of ⁹⁶Mo

In this document, all coincidence spectra used for the determination of the PSF of 96 Mo are shown. There are spectra for each photon-beam energy, and for each primary decay into a low-lying state. The coindidence spectra are created by gating on the decay of the low-lying state. The energy gates are are depicted in the top row of each figure. For the 2^+_2 , 2^+_6 , and 2^+_8 states, multiple transitions to other low-lying states were used for the creation of coincidence spectra. A fit was performed that simultaneously takes into account primary decays that are coincident with any of the observed decays of the low-lying state. The gates and fit spectra for each low-lying transition are depicted separately in multiple figures, one for each observed decay of the low-lying states 2^+_2 , 2^+_6 , and 2^+_8 , for which multiple decay transitions were observed.

In each figure, two fits are depicted in the middle and bottom panel. The middle panel shows a fit that distinguishes E1 and M1 radiation, and considers the information of each of the 110 possible detectors pairs separately to include angular-distribution information. The fit uses a non-negative prior distribution for the number of incident photons.

The bottom panel shows another fit that assumes pure E1 contribution. The fit is based on two sum spectra, one for all LaBr₃ detectors, and another one for all HPGe detectors. An uninformed prior distribution for the number of incident photons, which can also be negative, is used.

Each of the bottom two panels shows the sum spectrum of all detectors (even the spectra were fitted individually). Both the beam-gated spectrum and the background-gated spectrum are shown. The background-gated spectrum is scaled to the beam-gated spectrum according to the ratio of the energy widths of the gates (depicted in the top row). The expected energies for primary transitions to low-lying states are marked by dotted lines with gray labels.

Figure 1.1: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.2: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.3: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.4: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.5: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.6: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.7: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.8: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.9: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.10: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.11: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.12: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.13: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.14: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.15: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.16: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.17: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.18: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.19: $E_{\text{beam}} = 3900 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.20: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.21: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.22: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.23: $E_{\text{beam}} = 3900 \text{ keV}$, gating on the transition $3_1^+ \rightarrow 2_1^+$.

Figure 1.24: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_1^+ \rightarrow 0_1^+$.

Figure 1.25: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.26: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_2^+ \rightarrow 2_1^+$.

Figure 1.27: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.28: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_2^+ for the fit, but only showing $2_2^+ \rightarrow 2_1^+$.

Figure 1.29: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.30: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_4^+ \rightarrow 2_1^+$.

Figure 1.31: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.32: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.33: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.34: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.35: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.36: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.37: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.38: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.39: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.40: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.41: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.42: $E_{\text{beam}} = 4100 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.43: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.44: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.45: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.46: $E_{\text{beam}} = 4100 \text{ keV}$, gating on the transition $3_1^+ \rightarrow 2_1^+$.

Figure 1.47: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_1^+ \rightarrow 0_1^+$.

Figure 1.48: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.49: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.50: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.51: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.52: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.53: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_4^+ \rightarrow 2_1^+$.

Figure 1.54: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.55: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.56: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.57: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.58: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.59: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.60: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.61: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.62: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.63: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.64: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.65: $E_{\text{beam}} = 4300 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.66: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.67: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.68: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.69: $E_{\text{beam}} = 4300 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.70: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.71: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.72: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_2^+ \rightarrow 2_1^+$.

Figure 1.73: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.74: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.75: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.76: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_4^+ \rightarrow 2_1^+$.

Figure 1.77: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.78: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.79: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.80: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.81: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.82: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.83: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.84: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.85: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.86: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.87: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.88: $E_{\text{beam}} = 4500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.89: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.90: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.91: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.92: $E_{\text{beam}} = 4500 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.93: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_1^+ \rightarrow 0_1^+$.

Figure 1.94: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.95: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.96: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.97: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.98: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.99: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.100: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.101: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.102: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.103: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.104: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.105: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.106: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.107: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.108: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.109: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.110: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.111: $E_{\text{beam}} = 4700 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.112: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.113: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.114: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.115: $E_{\text{beam}} = 4700 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.116: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.117: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.118: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.119: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.120: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.121: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.122: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.123: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.124: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.125: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.126: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.127: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.128: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.129: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.130: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.131: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.132: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.133: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.134: $E_{\text{beam}} = 4900 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.135: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.136: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.137: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.138: $E_{\text{beam}} = 4900 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.139: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.140: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.141: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.142: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.143: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.144: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.145: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.146: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.147: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.148: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.149: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.150: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.151: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.152: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.153: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.154: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.155: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.156: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.157: $E_{\text{beam}} = 5100 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.158: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.159: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.160: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.161: $E_{\text{beam}} = 5100 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.162: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.163: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.164: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_2^+ \rightarrow 2_1^+$.

Figure 1.165: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.166: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.167: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_3^+ \rightarrow 2_1^+$.

Figure 1.168: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.169: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.170: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.171: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.172: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.173: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.174: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.175: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.176: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.177: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.178: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.179: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.180: $E_{\text{beam}} = 5300 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.181: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.182: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.183: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.184: $E_{\text{beam}} = 5300 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.185: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.186: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.187: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_2^+ \rightarrow 2_1^+$.

Figure 1.188: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.189: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.190: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.191: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.192: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.193: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.194: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.195: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.196: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.197: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.198: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.199: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.200: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.201: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.202: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.203: $E_{\text{beam}} = 5500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.204: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.205: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.206: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.207: $E_{\text{beam}} = 5500 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.208: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.209: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.210: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.211: $E_{\text{beam}} = 5750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.212: $E_{\text{beam}} = 5750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.213: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.214: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.215: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.216: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.217: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.218: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.219: $E_{\text{beam}} = 5750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.220: $E_{\text{beam}} = 5750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.221: $E_{\text{beam}} = 5750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.222: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.223: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.224: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.225: $E_{beam} = 5750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.226: $E_{beam} = 5750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.227: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.228: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.229: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.230: $E_{\text{beam}} = 5750 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.231: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.232: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.233: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.234: $E_{beam} = 6000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.235: $E_{beam} = 6000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.236: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.237: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.238: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.239: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.240: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.241: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.242: $E_{\text{beam}} = 6000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.243: $E_{beam} = 6000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.244: $E_{\text{beam}} = 6000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.245: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.246: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.247: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.248: $E_{\text{beam}} = 6000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.249: $E_{beam} = 6000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.250: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.251: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.252: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.253: $E_{\text{beam}} = 6000 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.254: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.255: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.256: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.257: $E_{\text{beam}} = 6250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.258: $E_{beam} = 6250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.259: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.260: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.261: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.262: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.263: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.264: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.265: $E_{beam} = 6250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.266: $E_{\text{beam}} = 6250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.267: $E_{beam} = 6250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.268: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.269: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.270: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.271: $E_{\text{beam}} = 6250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.272: $E_{\text{beam}} = 6250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.273: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.274: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.275: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.276: $E_{\text{beam}} = 6250 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.277: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.278: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.279: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.280: $E_{beam} = 6500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.281: $E_{\text{beam}} = 6500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.282: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.283: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.284: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.285: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.286: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.287: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.288: $E_{\text{beam}} = 6500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.289: $E_{beam} = 6500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.290: $E_{beam} = 6500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.291: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.292: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.293: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.294: $E_{beam} = 6500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.295: $E_{beam} = 6500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.296: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.297: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.298: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.299: $E_{\text{beam}} = 6500 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.300: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.301: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.302: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.303: $E_{beam} = 6750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.304: $E_{beam} = 6750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.305: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.306: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.307: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.308: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.309: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.310: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.311: $E_{\text{beam}} = 6750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.312: $E_{\text{beam}} = 6750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.313: $E_{\text{beam}} = 6750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.314: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.315: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.316: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.317: $E_{\text{beam}} = 6750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.318: $E_{\text{beam}} = 6750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.319: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.320: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.321: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.322: $E_{\text{beam}} = 6750 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.323: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.324: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.325: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.326: $E_{beam} = 7000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.327: $E_{\text{beam}} = 7000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.328: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.329: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.330: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.331: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.332: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.333: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.334: $E_{\text{beam}} = 7000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.335: $E_{beam} = 7000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.336: $E_{\text{beam}} = 7000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.337: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.338: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.339: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.340: $E_{beam} = 7000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.341: $E_{\text{beam}} = 7000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.342: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.343: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.344: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.345: $E_{\text{beam}} = 7000 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.346: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.347: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.348: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.349: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.350: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.351: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.352: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.353: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.354: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.355: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.356: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.357: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.358: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.359: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.360: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.361: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.362: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.363: $E_{beam} = 7250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.364: $E_{\text{beam}} = 7250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.365: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.366: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.367: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.368: $E_{\text{beam}} = 7250 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.369: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.370: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.371: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.372: $E_{\text{beam}} = 7500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.373: $E_{\text{beam}} = 7500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.374: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.375: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.376: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.377: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.378: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.379: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.380: $E_{beam} = 7500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.381: $E_{\text{beam}} = 7500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.382: $E_{\text{beam}} = 7500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.383: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.384: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.385: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.386: $E_{beam} = 7500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.387: $E_{\text{beam}} = 7500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.388: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.389: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.390: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.391: $E_{\text{beam}} = 7500 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.392: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.393: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.394: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.395: $E_{\text{beam}} = 7750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.396: $E_{beam} = 7750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.397: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.398: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.399: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.400: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.401: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.402: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.403: $E_{beam} = 7750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.404: $E_{\text{beam}} = 7750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.405: $E_{beam} = 7750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.406: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.407: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.408: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.409: $E_{beam} = 7750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.410: $E_{\text{beam}} = 7750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.411: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.412: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.413: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.414: $E_{\text{beam}} = 7750 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.415: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.416: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.417: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.418: $E_{\text{beam}} = 8000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.419: $E_{\text{beam}} = 8000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.420: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.421: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.422: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.423: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.424: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.425: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.426: $E_{\text{beam}} = 8000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.427: $E_{\text{beam}} = 8000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.428: $E_{beam} = 8000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.429: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.430: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.431: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.432: $E_{beam} = 8000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.433: $E_{beam} = 8000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.434: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.435: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.436: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.437: $E_{\text{beam}} = 8000 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.438: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.439: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.440: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.441: $E_{\text{beam}} = 8250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.442: $E_{beam} = 8250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.443: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.444: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.445: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.446: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.447: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.448: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.449: $E_{beam} = 8250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.450: $E_{\text{beam}} = 8250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.451: $E_{\text{beam}} = 8250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.452: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.453: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.454: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.455: $E_{beam} = 8250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.456: $E_{beam} = 8250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.457: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.458: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.459: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.460: $E_{\text{beam}} = 8250 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.461: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.462: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.463: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.464: $E_{beam} = 8500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.465: $E_{beam} = 8500 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.466: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.467: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.468: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.469: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.470: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.471: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.472: $E_{\text{beam}} = 8500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.473: $E_{\text{beam}} = 8500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.474: $E_{beam} = 8500 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.475: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.476: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.477: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.478: $E_{beam} = 8500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.479: $E_{beam} = 8500 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.480: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.481: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.482: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.483: $E_{\text{beam}} = 8500 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.484: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.485: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.486: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.487: $E_{\text{beam}} = 8750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.488: $E_{beam} = 8750 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.489: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.490: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.491: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.492: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.493: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.494: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.495: $E_{beam} = 8750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.496: $E_{\text{beam}} = 8750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.497: $E_{\text{beam}} = 8750 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.498: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.499: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.500: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.501: $E_{\text{beam}} = 8750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.502: $E_{beam} = 8750 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.503: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.504: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.505: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.506: $E_{\text{beam}} = 8750 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.507: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.508: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.509: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.510: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.511: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.512: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.513: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.514: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.515: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.516: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.517: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.518: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.519: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.520: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.521: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.522: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.523: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.524: $E_{beam} = 9000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.525: $E_{\text{beam}} = 9000 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.526: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.527: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.528: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.529: $E_{\text{beam}} = 9000 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.

Figure 1.530: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_1 \rightarrow 0^+_1$.

Figure 1.531: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 0^+_1$.

Figure 1.532: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_2 \rightarrow 2^+_1$.

Figure 1.533: $E_{\text{beam}} = 9250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 0^+_1$.

Figure 1.534: $E_{beam} = 9250 \text{ keV}$, gating on all observed decays of 2^+_2 for the fit, but only showing $2^+_2 \rightarrow 2^+_1$.

Figure 1.535: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_3 \rightarrow 2^+_1$.

Figure 1.536: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_4 \rightarrow 2^+_1$.

Figure 1.537: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_5^+ \rightarrow 2_1^+$.

Figure 1.538: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 0_1^+$.

Figure 1.539: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_1^+$.

Figure 1.540: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_6^+ \rightarrow 2_2^+$.

Figure 1.541: $E_{\text{beam}} = 9250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 0_1^+$.

Figure 1.542: $E_{\text{beam}} = 9250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_1^+$.

Figure 1.543: $E_{\text{beam}} = 9250 \text{ keV}$, gating on all observed decays of 2_6^+ for the fit, but only showing $2_6^+ \rightarrow 2_2^+$.

Figure 1.544: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2^+_7 \rightarrow 2^+_1$.

Figure 1.545: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_1^+$.

Figure 1.546: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $2_8^+ \rightarrow 2_3^+$.

Figure 1.547: $E_{\text{beam}} = 9250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_1^+$.

Figure 1.548: $E_{beam} = 9250 \text{ keV}$, gating on all observed decays of 2_8^+ for the fit, but only showing $2_8^+ \rightarrow 2_3^+$.

Figure 1.549: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $0^+_2 \rightarrow 2^+_1$.

Figure 1.550: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $1_a^+ \rightarrow 0_1^+$.

Figure 1.551: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $1_b^+ \rightarrow 0_1^+$.

Figure 1.552: $E_{\text{beam}} = 9250 \text{ keV}$, gating on the transition $3^+_1 \rightarrow 2^+_1$.