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Abstract
The dynamic wetting process and shape evolution of a droplet impacting perpendicular on a planar,
plain and super-hydrophobic substrate are investigated by means of direct numerical simulation of an
immiscible and isothermal binary fluid system. A diffuse-interface phase-field method is used, where the
Cahn-Hilliard equation, describing the evolution of the phase-field parameter, is coupled with the Navier-
Stokes system. The model parameter of the phase-field method are the capillary width, the mobility, the
mixing energy parameter and the equilibrium contact angle on fluid-solid boundaries. The mixing energy
parameter model will be extended in this work in order to deal with dynamic out-of equilibrium behavior
of the diffuse-interface on a local scope. 2D-axis-symmetric simulations in combination with adaptive
mesh refinement will be performed, the latter allowing for an immense reduction of control volumes far
from the diffuse-interface. For validation, two experimental setups are chosen, which have comparable
involved dynamics. First, the wetting factors for a water droplet with diameter 2.04 mm and initial
velocity 0.83 ms−1 on a substrate with contact angle 145° is studied, determining appropriate phase-
field parameters. Subsequently, the shape evolution of a water droplet with diameter 1.97mm and
initial velocity 1.0m s−1 on a substrate with contact angle 160° is validated using parameter sets from
previous simulations. For all simulations different mixing energy parameters models are compared with
each other.
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Kurzfassung
Der dynamische Benetzungsprozess und die Profilentwicklung eines Wassertropfens, der senkrecht auf
eine ebene, glatte und super-hydrophobe Oberfläche aufprallt, wird durch Direkte Numerischen Si-
mulation eines unvermischbaren, isothermen Zweiphasen-Gemisches untersucht. Eine Diffuse-Interface
Phasenfeldmethode kommt zum Einsatz, bei der die Cahn-Hilliard Gleichung, welche die Entwicklung
des Phasenfeldparameters beschreibt, mit den Navier-Stokes Gleichungen gekoppelt wird. Die Modellpa-
rameter der Phasenfeldmethode sind die Kapillarbreite, die Mobilität, der Mischungsenergieparameter
und der Gleichgewichtswinkel an Fluid-Festkörper Rändern. Das Model des Mischungsenergiepara-
meters wird im Rahmen dieser Arbeit erweitert, um lokal die Dynamik eines aus dem Gleichgewicht
gebrachten Diffuse-Interfaces zu beschreiben. 2D-achsensymmerische Simulationen werden durchge-
führt in Kombination mit Adaptiver Gitterverfeinerung, welche die Anzahl der Kontrollvolumen abseits
des Diffuse-Interfaces deutlich reduziert. Zur Validierung werden zwei Experimente ausgesucht, welche
eine vergleichbare Dynamik aufweisen. Zu Beginn wird der Benetzungsfaktor eines Wassertropfens mit
2.04mm Durchmesser und einer Anfangsgeschwindigkeit von 0.83m s−1 auf einer Oberfläche mit einem
Kontaktwinkel von 145° untersucht, wobei geeignete Modellparameter bestimmt werden. Danach wird
die Profilentwicklung eines Wassertropfens mit 1.97 mm Durchmesser und einer Anfangsgeschwindigkeit
von 1.0 ms−1 auf einer Oberfläche mit einem Kontaktwinkel von 160° validiert, unter Verwendung der
Parameter aus den vorherigen Simulationen. Bei allen Simulationen werden verschiedene Modelle des
Mischungsenergieparameters miteinander verglichen.
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1 Introduction
Nowadays, wetting processes play an important role in many industrial applications, for example
painting and coating or fuel injection. Special properties of the involved surfaces, notably super-
hydrophobicity, lead to many forward-looking technologies such as water-proofing of textiles or drag
reduction in microchannels [4]. Natural or artificial super-hydrophobic surfaces are realized by nano-
and micrometer scaled structures (Fig. 1.1a) leading to a layer of air underneath a piled drop, which
is refered to as the Cassie or Fakir state [5]. Macroscopically, the contact angle between droplet and
surface exceeds 90°, which results to a bulge of droplet volume over the contact area, see Fig. 1.1b-c.
In the past few years, experimental studies have established a new understanding of how water drops
advance on super-hydrophobic surfaces [4–6]. In motion direction the apparent advancing contact an-
gle is 180° because the droplet bends down to the next micropillar. On the receding site, pinning and
depinning events occur, where capillary bridges are formed and released. Such events are related with
energy dissipation and high dynamic local behavior of the droplet-gaseous interface. Measuring methods
are limited, hence a model-based analysis of experimental results is done to gain more insights. A direct
numerical simulation is needed.

Figure 1.1.: (a) Array of micropillar structures scanned with electron micrograph. (b) Water droplet on a
micro-structured super-hydrophobic substrate. (c) Confocal microscope image of the Cassie
state. All images taken from [5].

An established way to describe fluids is by means of continuum mechanics, more precisely the Navier-
Stokes equations. If a system of multiple fluids is considered, interfaces have to be modeled. Various
diffuse-interface models exist, which describe the interface with a finite thickness, where physical prop-
erties vary continuously between pure bulk fluid phases. One representative used in this work is the
Cahn-Hilliard diffuse-interface model, which introduces a phase-field variable acting as an order param-
eter to distinguish different fluid phases. Many works have used simulations based on the Cahn-Hilliard
formulation, notably Jacqmin [7, 8], Ding et al. [9] and Yue et al. [1, 10]. The Cahn-Hilliard model
is based on an energy formulation of the interface. The model parameter set determines the interfacial
thickness, the Cahn-Hilliard diffusion and the energy content of the interface, the latter associated with a
so-called mixing energy parameter. Naturally on a nanometer scale, the interfacial thickness is artificially
enlarged, so that computations with feasible costs are possible. The Cahn-Hilliard diffusion is the driving
force of fluid phase interactions within the diffuse interface. Diffuse-Interface models do not necessarily
need microstructures to create super-hydrophobicity because the equilibrium contact angle is typically
set as a parameter.
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This work is restricted to an isothermal, immiscible system of two phases with density and viscosity
contrast, here water and air at room temperature. A dynamic test case setup is applied, where a droplet
impacts perpendicular on a plane, smooth substrate with an initial velocity and no initial height. For
the first time the PHASEFIELDFOAM-solver, implemented in FOAM-EXTEND 3.2 and 4.0, is excessively used to
validate the simulated transient characteristics of droplet spreading in such a dynamic wetting scenario.
The interesting characteristics are the contact line motion, described by the so-called wetting factor,
and the droplet shape behavior; corresponding experiments have been done by Roisman et al. [2] and
Yun [3]. Improvements of the PHASEFIELDFOAM-solver will be investigated for the first time systematically,
which are the coupled solution procedure for the phase-field equation in combination with adaptive
mesh refinement. The latter will exhibit a tremendous reduction of computational costs, making former
simulations on clusters run on a single-core standard laptop in the same time.

Fundamental questions of this work are: Can the diffuse-interface phase-field model appropriately de-
scribe dynamic wetting processes on super-hydrophobic substrates using simplifications like absent solid
micro-structures or a fairly simple model for the contact angle? Is the assumption of a homogeneous
mixing energy parameter still justified when the interface is exposed to dynamic processes?

The main objective of this work is to study three different models for the mixing energy parameter
to deal with dynamic, out of equilibrium relaxation processes of the interface. So far the standard
formulation for the mixing energy parameter is a temporally and spatially constant, homogeneous model
throughout the whole computational domain. Yue et al. have proposed an approach which recalculates
the mixing energy parameter every time-step, but still is spatially constant [1]. In this work a new mixing
energy parameter approach is derived and tested thoroughly, which, to the author’s knowledge, has not
been reported yet. Another important topic, yet not main objective of this work, is the implementation
of the viscosity model within the PHASEFIELDFOAM-solver. In summary, the simulation campaign will
find an appropriate set of phase-field parameters for the given test cases, while testing two different
implementations of the viscosity model and three different models for the mixing energy parameter.
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2 Continuum Model
The phase-field method in the spirit of Cahn and Hilliard is introduced in the context of diffuse interface
models for a mixture of two immiscible and isothermal fluids. The corresponding governing equations
and the boundary conditions are presented as they are implemented in the PHASEFIELDFOAM-solver. The
generic structure of the governing equations and the closures are presented in subsequent sections to
give rise to a potential variation of constitutive equations or rheological models. In the final section a
new model with a local formulation of the mixing energy parameter is presented, which can be seen as
extension of the global approach by Yue et al. [1].

2.1 Cahn-Hilliard Phase-Field Model

Fluid interfaces and their evolution or transport can be represented either by sharp- or diffusive-interface
models. The latter goes back to the work of van der Waals [11], who formulated a continuous varia-
tion of density and viscosity between two fluids, unlike sharp-interface models, which assume a jump-
discontinuity. Diffusive-interface models can be subdivided further into several sub-models. Therein, the
phase-field model for immiscible fluids, going back to Hohenberg and Halperin [12], uses an energy-
based variational formalism modeling the fluid free energy. As a consequence, deformations of the
interface are described by a non-local mixing energy, balancing mixing and decomposition processes.

In this work the so-called Cahn-Hilliard phase-field model for diffuse interfaces is used. The transport
of the phase-field parameter χ, acting as an order parameter to separate two phases, reads in its closed
form

∂t
χ + u · ∇χ =∇·(κ∇Φ (χ)), (2.1)

where κ is a non-negative diffusion coefficient denoted as the mobility, Φ is the chemical potential
depended on the phase-field parameter itself and u is the barycentre velocity [1, 13]. In the following
sections an expression for Φwill be derived using the energy-based formalism of the Cahn-Hilliard phase-
field model. A functional expression is shown, which describes the phase-field parameter in a planar
interface in equilibrium state. On this basis, the natural boundary condition of the phase-field on fluid-
solid boundaries will be derived.

2.1.1 Helmholtz Free Energy

In their pioneering work [14], Cahn and Hilliard defined a mixing energy density fmix to be a function of
the phase-field parameter χ ∈ [−1, 1] and its corresponding gradient. The mixing energy density models
the molecular interaction between different fluid phases. Integration of fmix over the domain Ω yields
the Helmholtz free energy F of a fluid system as

F (χ,∇χ) =
∫

Ω

fmix(χ,∇χ) dx=

∫

Ω

�

λ

ε2
Ψ(χ) +

λ

2
|∇χ|2

�

dx. (2.2)
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Herein, λ is called mixing energy parameter scaling the mixing energy density, ε is a measure of the
interfacial thickness called capillary width [1] and Ψ(χ) is a potential. The potential Ψ is chosen as a
so-called double-well potential according to Ginzburg and Landau [15], which takes the form

Ψ(χ) =
1
4

�

χ2 − 1
�2

. (2.3)

The first term of fmix in (2.2) represents an energy density, which vanishes in the pure bulk phases
(χ →±1) and has a maximum at the center of the interface (χ = 0). Since two-phase systems in nature
tend to minimizes the free surface energy, the potential term tends to separate different fluid phases from
each other. The second term with the gradient expression of the phase-field parameter in (2.2) has the
opposite effect, forcing mixing of different fluid phases. Note that other choices of the potential Ψ (χ)
are possible, but the Ginzburg-Landau potential is the most often encountered model in literature, for
example in [1,9].

In a variational process the Helmholtz free energy F is minimized. The chemical potential is defined as
the functional derivative of F with respect to the phase-field parameter, viz.

Φ(χ) :=
δF(χ)
δχ

=
λ

ε2
Ψ ′(χ)−λ∇2χ. (2.4)

As Jacqmin [7] pointed out, two mechanisms exist to adjust an interface that has been driven out of
equilibrium. Firstly, gradients of the chemical potential lead to induced transport in the fluid system
components, which is referred to as a diffusional mechanism. Secondly, the chemical potential will be
part of a source term in the linear momentum equation, hence an advection mechanism takes place as
well.

2.1.2 Diffuse-Interface

The Cahn-Hilliard phase-field model can describe a system of multiple fluids, where every pair of fluid
components have an individual phase-field parameter modeled by (2.1) and an individual mixing energy
density leading to a global Helmholtz free energy. However, this work is restricted to a binary system
only. Fig. 2.1a shows a scenario of two fluids with densities ρA,ρB and kinematic viscosities νA,νB
embedded in a domain Ω. In the pure bulk phase of fluid A the phase-field parameter takes the value −1
and for fluid B the value 1, respectively. Interim values indicate the interfacial region of finite thickness.
The phase-field parameter varies over the interfacial region in a smooth but rapid way.

If the interface is assumed to be planar and in an equilibrium state, i.e. the chemical potential in (2.4)
vanishes, the solution of the one-dimensional equation Φ (χ (n)) = 0, where n varies in interfacial normal
direction, is given by

χ
eq(n) = tanh

�

n
p

2ε

�

. (2.5)

In equilibrium the thickness of the interface is uniform over the whole domain. As shown in Fig. 2.1b
about 90% of the whole variation of χ occurs over length of L = 4.1641ε. The tangent hyperbolic profile
in (2.5) is only valid for the Ginzburg-Landau potential (2.3).

A model for the mixing energy parameter λ is derived using the fluid-fluid interfacial tension (surface
tension) σ = const. from the sharp-interface context [10]. The one-dimensional matching condition
reads
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(a) (b)

Figure 2.1.: Diffuse-interface model (a) of a binary fluid mixture with (b) a tangent hyperbolic transition
of the phase-field parameter.

σ =

∫ ∞

−∞
fmix dn= λ

∫ ∞

−∞

�

1
4ε2

�

χ2
eq − 1

�2
+

1
2

�

dχeq

dn

�2�

dn (2.6)

(2.5)
⇒ λ=

3

2
p

2
σε (2.7)

Eq. 2.7 will be referred to as the homogeneous mixing energy parameter model for λ, which is valid over
the whole domain Ω and constant if the capillary width ε is constant. In this sense, ε can be considered
as a main phase-field parameter and λ being only a secondary derived property if one wishes to relate
to surface tension in the sharp-interface context.

2.1.3 Fluid-Solid Boundaries

When a binary fluid system in the sharp-interface context is in contact with a solid surface (wall), a
contact line is established, see Fig. 2.2a. Young’s law,

σ cosθe = σsA −σsB, (2.8)

is used to describe the equilibrium contact angle θe from the fluid-fluid interfacial tension σ and the
fluid-solid interfacial tensions σsA and σsB [10]. However, in the diffuse-interface model, Fig. 2.2b, there
is no localised contact line but an interfacial zone. A contact line in the sense of a diffuse interface
can only be interpreted as the iso-contour line for χ = 0 ending on the wall. It is an advantage of
the diffuse interface that contact line motion is observed, although no-slip conditions for the velocity are
present [7]. While the mixing energy density fmix is used to describe the inner domain of the fluid system,
a wall energy density fw (χ) applies on the solid surface. The free energy of the system reads [10]

F (χ,∇χ) =
∫

Ω

fmix(χ,∇χ) dx +

∫

∂Ω

fw(χ) dS. (2.9)
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(a) (b) (c)

Figure 2.2.: Binary fluid system on a super-hydrophobic substrate with equilibrium contact angle θe > 90°
(a) in the sharp-interface model with interfacial tensions and (b) in the diffuse-interface
model with bulk and wall potentials. (c) Definition of the interfacial normal direction n
relative to the wall orientation.

A natural boundary condition of the phase-field is formulated on the solid wall [10], which respects the
variation of fw (χ), viz.

λ
∂ χ

∂ n∂Ω
+ f ′w (χ) = 0. (2.10)

Herein n∂Ω is the wall normal direction, cp. Fig. 2.2c, and f ′w denotes the variation of fw with respect to
χ. It is to be pointed out that in the diffuse-interface context Eq. 2.10 describes an equilibrium contact
angle, resembling Cox’s equation [7]. Therefore, the effective contact angle is non-constant and may
vary due to relaxation. The notation "equilibrium" refers to the thermodynamic equilibrium.

In the following a derivation of the wall energy density is shown, which is rarely seen in literature.
Considering Fig. 2.2c, the interfacial normal direction n can be expressed in terms of the wall normal
direction n∂Ω and the wall tangential direction τ∂Ω, viz.

n= −n∂Ω sin (θe − 90°) +τ∂Ω cos (θe − 90°) = n∂Ω cos (θe) +τ∂Ω sin (θe). (2.11)

Using (2.5), (2.11) and equilibrium assumption for the interface, the surface normal derivative of the
phase-field reads

∂ χ(n)
∂ n∂Ω

=
∂ χ

∂ n
∂ n
∂ n∂Ω

=
1
p

2ε

�

1−χ2
�

cosθe

multiply (2.7)
⇒ λ

∂ χ

∂ n∂Ω
=

3
4
σ
�

1−χ2
�

cosθe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=: − f ′w(χ)

. (2.12)

From (2.12) f ′w can be identified and intergrated with respect to the phase-field parameter, viz.

fw (χ) = −σ cosθe

χ(3−χ2)
4

+
σsA+σsB

2
(2.13)

In (2.13) the integration constant is set to satisfy Young’s law in (2.8), i.e. fw (−1) = σsA and fw (1) = σsB.
In summary, (2.10) expresses a local equilibrium at the wall and hence is referred to as the equilibrium
boundary condition of the phase-field. The expression for the equilibrium boundary condition is influ-
enced by the special choice of the Ginzburg-Landau potential in (2.3).
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2.1.4 Mobility Parameter

The capillary width ε and the mobility parameter κ are considered as the main parameters of a Cahn-
Hilliard-type diffuse-interface model, as they are introduced throughout the literature. The mixing en-
ergy parameter λ can be viewed as a secondary parameter arising from the main ones, under further
assumptions.

The capillary width controls the thickness of the interface and is often given as the dimensionless Cahn
number Ch = ε/Lref, where Lref is a macroscopic length scale, for example a droplet diameter. The Cahn
number influences the accuracy, efficiency and stability of a simulation [16]. However, such an intuitive
interpretation is more difficult for κ. In order to artificially thicken the interface, a scaling model is used,
which governs the mobility of the diffuse interface for different capillary widths than the physical one
and is important for a consistent formulation in the sharp-interface limit, ε→ 0 [10]. Different scaling
laws κ∝ εn for some n are considered in literature [7] to give a first attempt for a mobility parameter
value. This present work uses the scaling law

κ= Mε2 (2.14)

with a mobility coeffient M . By default one can use M = 1m skg−1 as a first attempt but then one
should pursue calibration by validation simulations. The corresponding dimensionless number for κ is
the Péclet number Pe = LrefUref/(κΦref) with Uref the characteristic velocity and Φref the characteristic
value of the chemical potential [9]. The scaling law (2.14) has been used by Ding et al. [17], who have
studied small droplets in rapid droplet spreading, and also in [18,19], where the PHASEFIELDFOAM-solver
has been utilised. Some authors also emphasize that the mobility can be a function of the phase-field
parameter itself [13], which further complicates the Navier-Stokes-Cahn-Hilliard system.

2.1.5 Non-Equilibrium Boundary Condition

In this work dynamic droplet spreading is studied, hence non-equilibrium formulations are considered.
However, most studies with the Cahn-Hilliard model have only used the equilibrium boundary formu-
lation (2.10) and have neglected near-wall non-equilibrium effects, such as the finite relaxation of the
interface, for example in rapid wetting processes [20]. A more generalised formulation of (2.10) has
been introduced by Jacqmin [8] and studied by Yue et al. [20] and Qian et al. [21], viz.

∂ χ

∂ t
+ uw · ∇χ = −Γw

�

λ
∂ χ

∂ n∂Ω
+ f ′w (χ)

�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=: Φw

. (2.15)

Herein, the equilibrium boundary condition is referred to as the wall chemical potential Φw, uw is the
velocity of the wall, i.e. the solid surface, and Γw is a new introduced rate constant denoted as the wall
relaxation parameter. Taking the limit Γw → 0 together with κ → 0 produces the sharp-interface limit,
where advection is dominant. On the opposite, taking Γw → ∞ and κ → ∞ produces the diffuse-
interface limit where diffusion is dominant and the stress singularity of the moving contact line is
resolved [21].

Like the mobility, discussed in the previous section, the wall relaxation parameter should be such as
a phenomenological parameter within the diffuse-interface context. However, there are interpreta-
tions related to molecular-kinetic theories to get at least an initial, physically reasonable guess of its
magnitude. However, the value of Γw highly depends on the fluid system and involved fluid-surface
combinations. For example, Jacqmin has proposed Γw ≈ 109 s kg−1 in [8] and Carlson et al. have used
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Γw ≈ 7× 107 s kg−1 in [22]. Similar to (2.14), the scaling law for the relaxation parameter is expressed
in terms of a relaxation factor G with default value G = 1, viz.

Γw = G · 109 s kg−1. (2.16)

2.2 Cahn-Hilliard-Navier-Stokes Diffuse-Interface Model

After introducing the basic properties of the Cahn-Hilliard-type phase-field formulation, the coupling
to Navier-Stokes equations is focused. Starting with the generic structure followed by closure assump-
tions, the system of Navier-Stokes-Cahn-Hilliard partial differential equations and boundary conditions
is shown.

2.2.1 Generic Structure

As a starting point the generic structure of so-called class I diffuse-interface models is used [23], but
restricted to isothermal conditions. Therein, a Navier-Stokes system is described with mass transport of
both constituents and the momentum equation. In addition, the transport equation of the phase-field
parameter is included, also formulations for the boundary and initial conditions are prescribed.

In the following, a system of two incompressible, viscous fluids is assumed with immiscible bulk phases.
Each fluid phase can be assigned to a volumetric phase fraction αi ∈ [0, 1]. Mixing processes of this bi-
nary system are only allowed within a diffuse, capillary interface transition region. The volume averaged
phase-field parameter is given by c = α2 − α1. As the difference of the volumetric phase fractions, c
shares the same values for the bulk phases, e.g. c ∈ [−1,1]. A general volume averaged quantity φ can
be calculated by

φ :=
1− c

2
φ

1
+

1+ c
2

φ
2
, (2.17)

where the phasic average φ
k

is defined from the conditional volume-averaged quantitiy φk :=
∫

V φk dx

via αkφ
k

:= φk , see [24] for further details. The unclosed generic form for Cahn-Hilliard-type two-phase
flow is

∇·u = 0, (2.18a)

∂t(ρ u ) +∇·(ρ u ⊗ u ) =∇·〈σ〉−∇· (u ⊗ 〈J〉) + b + 〈f〉c , (2.18b)

∂t c +∇· ( c u ) = −
2

ρ2 − ρ1∇·〈J〉 . (2.18c)

The bracket notation 〈·〉 denotes quantities which need further constitutive assumptions for closure.
Therein, 〈σ〉 is the total stress tensor, b is the body force vector, 〈f〉c denotes the interfacial energy
density and 〈J〉 is the sum of the relative phasic mass fluxes with respect to u , see [24] for further
details.

The solenoidal condition (2.18a) results from the summation of the phasic continuity equations if
the mixing procedure is exact, i.e.

∑

k αk = 1, and bulk phases are incompressible. In addition, in a
diffuse-interface model it is required that the sum of the volumetric phase fluxes needs to vanish, i.e.
∑

k 〈J〉k /ρ
k = 0. Hence, the Cahn-Hilliard model for binary fluids states that during mixing processes

the volume is conserved. The diffusive flow is related to the local composition of the binary mixture
and not to the densities [9]. This behaviour makes diffuse-interface simulations comparable to solu-
tions obtained by incompressible Navier-Stokes equations. It can also be shown [9] that for mixtures
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with density contrast the global mass of either species is conserved when there is no diffuse volume flux
through the boundaries, i.e. n · 〈J〉k /ρ

k = 0. A solenoidal velocity field also means that it is decoupled
from diffuse fluxes, which is important in cases when diffuse fluxes get significantly large, thus reducing
numerical instability [9].

The second term on the r.h.s of the linear momentum equation (2.18b) modifies the total stress tensor
〈σ〉 to be an objective tensor [13]. The Cahn-Hilliard equation (2.18c) is obtained by the difference of
the phasic continuity equations.

2.2.2 Closure Assumptions

The constitutive equations are given by

〈σ〉= −〈p〉 I+ 〈τ〉 , (2.19a)

〈τ〉= 〈η〉
�

∇u +∇u T
�

, (2.19b)

〈η〉= ρ 〈ν〉= ρ ν , (2.19c)

〈f〉c = −λ∇· (∇ c ⊗∇ c ) , (2.19d)

〈J〉= 〈J1〉+ 〈J2〉= −
�

ρ2 − ρ1

2

�

κ∇Φ( c ). (2.19e)

The fluids are described as Newtonian fluids, hence the total stress tensor (2.19a) is split in a volumet-
ric part, introducing the pressure 〈p〉, and a deviatoric part (2.19b). The deviatoric part contains the
dynamic viscosity 〈η〉, which, as a scalar field, also needs to be described further. A straight forward
assumption is to simply use the linear average (2.17) for the dynamic or kinematic viscosity in (2.19c).
Alternatively, an harmonic average can be used [25]. In both cases the numerical model has to ensure
the boundedness of the phase-field parameter to prevent negative material parameters especially for
strong variational fluids. Shifts from expected phase-field parameter values are a natural consequence
in phase-field simulations, even tough c is conserved globally [26].

The interfacial energy density (2.19d) takes the form of a Korteweg-tensor and is part of the so-called
Model-H by Hohenberg and Halperin [12]. Using tensor calculus rules, one can reformulate (2.19d) into
Φ( c )∇ c and a remaining gradient term. The latter will be absorbed by the pressure

p̃ := p+
λ

ε2
Ψ( c ) +

λ

2
|∇ c |2, (2.20)

where the tilde notation will be neglected further on. The closure for the phase-field flux J in (2.18c)
and (2.18b) is achieved by a Fick’s equation for diffusion (2.19e) with the mobility κ as the diffusivity
constant.
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2.2.3 Governing Equations

Inserting the closure terms (2.19a) to (2.19e) into the generic forms (2.18a) to (2.18c) yields the final
form of the Cahn-Hilliard-Navier-Stokes system to describe the diffuse-interface model of two incom-
pressible, immiscible and isothermal Newtonian fluids:

∇·u = 0, (2.21a)

∂t(ρ u ) +∇·(ρ u ⊗ u ) = −∇pd −∇
�

ρ g·x�+ ρ ν∇· �∇u +∇u T
�

−
ρ2 − ρ1

2
κ∇· (u ⊗∇Φ) +Φ∇ c , (2.21b)

∂t c +∇· ( c u ) = κ∇2Φ, (2.21c)

with

Φ( c ) =
λ

ε2
[ c ( c − 1)( c + 1)]−λ∇2 c . (2.21d)

In the linear momentum equation (2.21b) the pressure has been split up into its dynamic part pd, while
the static part has been absorbed into the buoyancy term, i.e. the gravitational field g. The term Φ∇ c
models interfacial forces in the diffuse-interface context, i.e. as a continuum force, and exhibits a key
principle: Advection processes, disturbing the shape of the interface by lengthening, thickening or thin-
ning, alter the total amount of free energy, which is countered by interfacial processes [7]. Alternatively,
the formulation c∇Φ can be used, which follows from reformulating the pressure p̂ = p−Φ c . However,
the used model in this work has the advantage that its pressure formulation ensures the divergence-free
velocity constraint and also makes less smoothness demands on the chemical potential [27].

2.2.4 Boundary Treatment / Initial Condition

The boundary condition for the phase-field model of two-phase Navier-Stokes flows is based on the works
of Jacqmin [7], which can be derived as

u |∂Ω = 0, (2.22a)

∂nΦ= 0, (2.22b)

∂n c =
p

2
2

1
ε

cosθe

�

1− c 2
�

, (2.22c)

(u , c )|t=0 = (u 0, c 0) . (2.22d)

Equation 2.22a is the commonly used no-slip condition at the wall. This means that only the Cahn-
Hilliard diffusion process can lead to a relative motion of the contact line. The phase-field equation
needs to be described by two conditions (2.22b) and (2.22c). The first one is the no-flux condition,
which means that the variation of the chemical potential in normal direction to the wall needs to vanish.
The second one is the equilibrium boundary condition from (2.10) which models the interfacial fluid-
solid boundaries with given equilibrium contact angle θe, as well as pure bulk regions where ∂n c = 0
applies. The homogeneous mixing energy parameter from (2.7) was inserted, since λ is both spatially
and temporally constant. Alternatively, if (2.15) is used, a non-equilibrium or out-of-equilibrium bound-
ary condition arises, viz.

∂n c =
p

2
2

1
ε

cosθe

�

1− c 2
�

−
2
p

2
3

1
σε Γw

�

∂ c
∂ t
+ uw · ∇ c

�

. (2.23)
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2.3 Local Model for an Inhomogeneous Mixing Energy Parameter

So far, the current implemented theory of the PHASEFIELDFOAM-solver has been described. The first
suggestion of a correction scheme for dynamic flow scenarios in the present diffuse-interface phase-field
model has been from Yue et al. [1], who have simulated a drop deforming in a shear flow with Reynolds
number Re = LrefUref/ν = 0. The computational results have showed a reduced drop deformation that
has been described as a consequence of interfacial relaxation. Compared to Yue et al., the present work
uses a droplet impact setup with Re ≈ 2000, i.e. a water droplet with a diameter of about 2 mm and
an initial velocity of about 1 m s−1. Hence, higher dynamics of the interface are expected. Thinking of
the first contact of the droplet with the solid surface, the interface can not be treated homogeneously,
as parts can fall while other parts impact simultaneously. All in all, a local model for the mixing energy
parameter λ is advised.

This section first takes a look at Yue’s global approach, then subsequently enhancing it with a localization
procedure. The chemical potential and the natural boundary condition are deduced consistently from
a variational argument with the Helmholtz free energy. Lastly, the right-hand side of the momentum
equation is recalculated in order to see if additional terms arise.

2.3.1 Global Mixing Energy Parameter Model [1]

As Yue et al. [1] have pointed out, a fixed λ causes an elevated ’effective interfacial tension’ that sup-
presses drop deformation . They have gained a more realistic interface behaviour by recalculating λ each
time step according to the matching condition

σS =

∫

Ω

�

λ

2
|∇ c |2 +

λ

ε2
Ψ( c )

�

dx (2.24)

⇔ λglobal :=
σS

∫

Ω

�

1
2 |∇ c |2 + 1

ε2Ψ ( c )
�

dx
(2.25)

where λ is the constant homogeneous mixing energy model, pulled out of the integral in (2.24), and S
is the circumference of the interface for the iso-contour c = 0. Eq. 2.25 can be referred to as the global
mixing energy parameter model; global in the sense that it is spatially but not temporally constant. Yue et
al. have also stated [1] that large-scale problems with complex interfaces, especially splitting interfaces,
seem to be impractically described by the matching condition (2.24).

2.3.2 Localisation of Yue’s Approach

The step-wise derivation of the local mixing energy parameter model is shown in the following, clearly
demonstrating all model assumptions.

1.) Equilibrium vs. Non-Equilibrium Assumption
The assumption of a planar interface in equilibrium leads to a vanishing chemical potential, which means
that both term on the right side in (2.4) are equal. Hence, the potential term in (2.6) can be expressed
in terms of the phase-field gradient, which results in a formulation of σ that is often encountered in
literature [7, 9]. Inserting (2.5) into (2.6) results in an homogeneous mixing energy parameter model.
Thus, if both the potential and gradient part in (2.24) are maintained further on, the interface can be
assumed to be in a non-equilibrium state.
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2.) Diffuse-Interface Surface Integration
Yue’s matching condition (2.24) is expressed as a volume integration over the whole domain Ω, which
has resulted from an integration of (2.6) along the contour of c = 0. The expansion from 1D to 3D in
the diffuse-interface context is denoted here as diffuse-interface surface integration.

3.) Localisation Process
Localisation of (2.24) leads to

σaΣ = λ

�

|∇ c |2

2
+
Ψ( c )
ε2

�

(2.26)

where aΣ ≡ Si/Vi is the (local) interfacial area per unit volume.

4.) Modeling the Interfacial Area per Unit Volume
To model aΣ, the interface is assumed to be planar and in equilibrium state. Substituting (2.7) into
(2.6) followed by expressing the potential term with the phase-field gradient and resorting leads to an
expression for an inverse interfacial length scale [8,28], viz.

2
p

2
3

1
ε
=

∫ ∞

−∞

�

d c
dn

�2

dn. (2.27)

Applying diffuse-interface surface integration on (2.27) results in

2
p

2
3

S
ε
=

∫

Ω

|∇ c |2 dx. (2.28)

After a localisation of (2.28) and resorting, the interfacial area per unit volume reads

aΣ =
3

2
p

2
ε|∇ c |2. (2.29)

5.) Local Mixing Energy Parameter Model
Inserting (2.29) into (2.26) and resorting leads to a local model of the mixing energy parameter, viz.

λlocal :=
3

2
p

2
σε

|∇ c |2
|∇ c |2

2 + Ψ( c )
ε2

. (2.30)

Eq. 2.30 is the main result of this section and, to the author’s knowledge, has not been reported yet.
λlocal is local in the sense that it is both spatially and temporally non-constant. The denominator in
(2.30) allows that λlocal can potentially describe non-equilibrium processes. In equilibrium the fraction
is equal to one, so that λlocal gets constant and the homogeneous model (2.7) is resembled. The fraction
formulation however is indefinite in the pure bulk phases. Hence, λlocal should only be applied in the
interfacial region, while in the pure bulk phases the homogeneous mixing energy parameter model (2.7)
should be valid.
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6.) Comparison with Literature
A main part of the derivation of (2.30) is the aΣ-model, which is barely encountered in literature in the
diffuse-interface context. Notable work has been done by Sun and Beckermann [28]. Their definition of
the interfacial area per unit volume has an algebraic form, viz.

aΣSB = (1− c 2)/(2
p

2ε). (2.31)

For a planar interface in equilibrium state, equating aΣSB and |∇ c | has the same equilibrium solution for
the phase-field parameter (2.5) as the present model. With diffuse-interface surface integration it can be
shown from [28], that the connection of aΣSB and aΣ is

aΣ = 3
p

2ε
�

aΣSB

�2
. (2.32)

Hence, inserting (2.31) into (2.32) would suggest that

ãΣ =
3

2
p

2
ε

�

1
2
Ψ ( c )
ε2

�

, (2.33)

which is similar to using the potential term Ψ( c ) to simplify (2.6) and repeating the derivation to get
(2.29). In fact, gradient and potential term are alike for vanishing chemical potential, so the question is,
what supports the usage of (2.29) instead of (2.33)?

If the interfacial area per unit volume has an algebraic form like (2.33), then one assumes that ãΣ

is constant on an iso-contour line and varies only in interfacial direction. If c varies arbitrarily in a
large-scale system, then a relation between the normal gradient and an algebraic model is generally
not observed [28], hence the equilibrium assumption is violated. An algebraic expression of aΣ would
cancels out any influence of the macroscopic interface curvature. The polynomial formulation of aΣSB has
been declared as an attempt that appears physically meaningful; behaving like a Dirac delta function to
pick out the interface. Other functional relationships have not been excluded. This supports the present
usage of (2.29) instead of (2.33), since aΣ does not suffer from any iso-contour line restrictions.

Additionally, an algebraic numerator formulation in (2.30) has the consequence that λlocal would increase
if the interface is thickened (indicated only by a smaller gradient) and vice versa. From an energetic
point-of-view a thickened interface means that the mixing energy is distributed over a larger domain,
so locally an energy decrease must take place due to conservation of energy. Interfacial parts with
lower energy should be represented by a decreased λlocal, as they contribute less to the cohesion of the
interface; from mechanics known as tangential forces. This behavior can only be seen if (2.29) is used
instead of (2.33).

2.3.3 Chemical Potential and Boundary Condition

In this section the variational process for the full expression of the total free energy will be excercised in
order to shown consistency with fundamental work, see [29]. The derivation for a constant λ can also
be found in [30]. Generally one has a functional F and a corresponding functional derivative (or first
variation) δF :

F( c ) =

∫

Ω

f [x, c (x),∇ c (x)] dx, δF( c , c ?) =

∫

Ω

δF
δ c
(x) c ?(x) dx

where c ?(x) describes the change in c . The term δF
δ c is the functional (or variational) derivative of F and

defined as the chemical potential Φ [29]. In the following, the explicit notation of spatial dependence will
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be neglected, but it is pointed out that λ = λlocal = λ(x) is considered. The total free energy including
the boundary expression reads

F( c ) =

∫

Ω

fmix( c ) dx+

∫

∂Ω

fw( c ) dS

=

∫

Ω

�

λ

ε
Ψ( c ) +

λ

2
(∇ c · ∇ c )

�

dx+

∫

∂Ω

fw( c ) dS,

where

fmix( c ) :=
λ

ε2
Ψ( c ) +

λ

2
(∇ c · ∇ c )

has been used. To gain the chemical potential and the natural boundary condition for c within this
framework, the first variation of the total free energy is considered, viz.

δ

δγ

�

F [ c + γ c ?]
�

�

�

�

�

γ=0

= 0,

where γ c ? is the increment of the phase-field parameter. Hence,

0=
δ

δγ

�∫

Ω

�

λ

2
(∇ c + γ∇ c ?) · (∇ c + γ∇ c ?) +

λ

ε
Ψ( c + γ c ?)

�

dx+

∫

∂Ω

fw( c + γ c ?) dS

��

�

�

�

γ=0

=

∫

Ω

�

λ∇ c · ∇ c ? +λγ∇ c ? · ∇ c ? +
λ

ε
c ?Ψ ′( c + γ c ?)

�

dx+

∫

∂Ω

c ? f ′w( c + γ c ?) dS

�

�

�

�

γ=0

=

∫

Ω

�

λ∇ c · ∇ c ? +
λ

ε
Ψ ′( c ) c ?

�

dx+

∫

∂Ω

f ′w( c ) c ? dS.

Now using ∇·(λ c ?∇ c ) = λ c ?∇2 c + c ?∇ c · ∇λ+ λ∇ c · ∇ c ? and applying the divergence theorem,
one obtains

0=

∫

Ω

�

λ

ε
Ψ ′( c )−λ∇2 c −∇λ · ∇ c

�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=: Φ( c ,∇ c )

c ?dx+

∫

∂Ω

�

λ∂n c + f ′w( c )
�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equilibrium b.c.

c ? dS.

Since this is true for an arbitrary function c ?, in equilibrium the chemical potential vanishes. The for-
mulation of the chemical potential is an extension of the standard formulation (2.21d). The equilibrium
boundary condition has the same structure as (2.22c) but the value of λ has to be treated locally and
can not be replaced in terms of σ and ε. If λ is explicitly a function of c and/or∇ c then this variational
procedure needs to be considered again in order to respect the boundary treatment.
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2.3.4 Consequences for the Momentum Equation

The interfacial energy density 〈f〉c in (2.19d) has resulted from the assumption of an homogeneous
mixing energy parameter, when applying the divergence on a stress tensor 〈σc〉. The stress tensor of
the binary system can be gained by a variational procedure, also called virtual work principle, see Yue
et al. [1]. Applying volume averaging and divergence on 〈σc〉, the coupling term Φ∇ c needs to be
reconstructed within the momentum equation. This procedure will be used to identify any changes
when assuming that λ is inhomogeneous.

A general formulation of the local stress tensor [1,13] is given by

〈σc〉= −
∂ fmix (χ,∇χ)

∂∇χ
⊗∇χ, (2.34)

with the partial derivative of the mixing energy density, defined by (2.2), with respect to the gradient
of χ. Although λ is defined by (2.30), the dependence of χ and especially ∇χ is not considered here,
because this would lead to very complex expressions. Note that different models for 〈σc〉 can be found
in literature [31]; the usage depends on the phenomena behind the test cases, e.g. Marangoni effect.
The divergence of the volume averaged tensor 〈σ̄c〉 from (2.34) reads

∇·〈σ̄c〉=∇·[−λ(∇ c ⊗∇ c )]

= −λ∇·(∇ c ⊗∇ c ) − (∇ c ⊗∇ c )∇λ

= −λ
�

(∇⊗∇ c )∇ c +∇2 c∇ c
�

− (∇λ · ∇ c )∇ c

= −λ
�

1
2
∇|∇ c |2 +∇2 c∇ c

�

− (∇λ · ∇ c )∇ c +
λ

ε2
Ψ ′( c )∇ c −

λ

ε2
∇Ψ( c )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

=
�

λ

ε2
Ψ ′( c )−λ∇2 c −∇λ · ∇ c

�

∇ c −λ∇
�

1
ε2
Ψ( c ) +

1
2
|∇ c |2

�

= Φ∇ c −∇
�

λ

ε2
Ψ( c ) +

λ

2
|∇ c |2

�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
absorbed into pressure

+
�

1
ε2
Ψ( c ) +

1
2
|∇ c |2

�

∇λ,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=: s̃mix

(2.35)

where, compared to the standard formulation, an additional source term s̃mix appears on the right-hand
side of the momentum equation. In the last transformation step the pressure formulation (2.20) has
been reproduced, which would have been more straight-forward for a constant λ. This not only allows
for a comparison of the pressure with the standard model, but also for a vanishing s̃mix in cases of homo-
geneous λ-formulations or (bulk-)regions. Furthermore, a non-modified pressure formulation shows a
pressure ’hump’ inside the diffuse interface, which have been pointed out by Sun and Beckermann [28].
They have also showed that planar interfaces in equilibrium have identical far-field (e.g. bulk) pressures,
while spherical interfaces have different far-field pressures. The pressure difference is of the order of σκ̃,
where κ̃= 2/r is the curvature of a sphere of radius r.

In summary, the new local formulation of the mixing energy parameter shows additional terms in the
chemical potential and momentum equation, that scales with ∇λ. The standard λ-formulation is resem-
bled in this new model when λ is homogeneous. Interfaces in equilibrium are still characterized by the
standard homogeneous mixing energy parameter value λ= 3σε/(2

p
2). No addition terms arise for the

equilibrium boundary condition, but the instantaneous λ-value, i.e. λglobal or λlocal, has to be applied.
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3 Numerical Method
In this chapter an overview of the improved numerical method of the PHASEFIELDFOAM-solver is given.
The overall solution algorithm for the pressure-velocity coupling, namely the PIMPLE-algorithm, is not
discussed in detail here. The main part of this chapter deals with the discretisation of the Cahn-Hilliard
equation (2.21c), since it is a non-linear fourth-order partial differential equation. Special techniques
to improve the implicitness of the discretisation of the non-linear chemical potential (2.21d) and the
boundary term (2.22c) or (2.23) are presented. The coupled semi-discretised matrix system of the
phase-field and chemical potential is introduced for each technique. This is a crucial improvement
compared to the currently used segregated approach, where the chemical potential is calculated after
the solution of the phase-field, and has been systematically tested in this work. The boundary conditions
will be discretised with the same techniques to be consisted with the bulk-solution. Lastly, the numerical
method to deal with the indefiniteness of the local mixing energy parameter model is shown.

3.1 Discretisation of the Cahn-Hilliard Equation

Non-linear terms in the Cahn-Hilliard equation (2.21c) and (2.21d) and the natural boundary condition
(2.22c) or (2.23) originate from the mixing energy density (2.2) and the wall energy potential (2.13),
more precisely the corresponding derivative with respect to the phase-field parameter. In the first section
a general formalism of two selected linearisation schemes is shown, which are referred to as stable in
terms of energy-stable and optimal in terms of the order in time of the phobic numerical dissipation [32].
When applying no linearisation, the corresponding method is called none. In subsequent sections, the
linearisation schemes are applied on the mixing energy density and the wall energy potential.

3.1.1 Linearisation of Non-Linear Terms

The basic idea of two selected semi-implicit linear schemes are considered in the following, going back
to the works of Eyre [33]. The first one is the stable scheme, which is first-order in time and derived by
adding additional phobic numerical dissipation. An example of a ’phobic’ term is the non-linear potential
part of the Helmholtz free energy (2.2), while ’philic’ is the gradient part. The implicit discretisation of
an arbitrary non-linear potential P is split in a convex (or contractive) part Pc, that consists only of the
new value c n+1, and a non-convex (or expansive) part Pe with the old values of c by introducing a
parameter β , viz.

P
�

c n+1, c n
�

= Pc

�

c n+1,β
�

+ Pe ( c
n,β) . (3.1)

The stable scheme follows from differentiation of (3.1) with respect to the phase-field parameter denoted
by (.)′, viz.

P ′
�

c n+1, c n
�

= P ′c
�

c n+1,β
�

+ P ′e ( c
n,β) . (3.2)

The introduced parameter β is restricted by an energetical analysis so that the scheme is unconditionally,
i.e. time-step independently energy-stable [32]:

β ≥
3 ( c n)2 − 1

2
. (3.3)
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Since c 2 ≤ 1 should hold for the boundedness of the phase-field approach, the minimum value of the
parameter is β = 1, which will be the default value in this work. This is equivalent to introducing the
least possible numerical diffusion.

The optimal scheme is second-order in time and guarantees optimal dissipation compared to the stable
method. Unfortunately this comes at the cost that the optimal scheme is only conditionally solvable, i.e.
a restriction to the time-step arises [32]. The optimal scheme is derived from the Hermite quadrature
formula

∫ b

a

g(x) d x = (b− a)g(x) +
1
2
(b− a)2 g ′(x) + · · ·

with neglected higher-order terms, such that the non-linear potential can be written as

P
�

c n+1
�

− P ( c n) =
�

c n+1 − c n
�

P ′ ( c n) +
1
2

�

c n+1 − c n
�2

P ′′ ( c n)

P ′
�

c n+1, c n
�

= P ′ ( c n) +
1
2

�

c n+1 − c n
�

P ′′ ( c n) , (3.4)

where (.)′′ denotes the second derivative with respect to the phase-field.

3.1.2 Cahn-Hilliard Equation

The Cahn-Hilliard system consists of two second-order non-linear PDE’s for the phase-field variable
(2.21c) and the chemical potential (2.21d). A semi-(time-)discretised form of each equation is achieved
by treating the diffusive term implicit, while advective terms and non-linear potential parts remain ex-
plicit [1]. Both equations are assembled in a single block matrix for a simultaneous solution process.
The solution system is represented by

(

¹∂t c º− ¹κ∇2Φº = −∇·(u c )n

¹λ∇2 c º+ ¹Φº = λn

ε2Ψ
′ ( c n)−∇λn · ∇ c n,

(3.5)

where the double brackets notation ¹.º denotes an implicit finite-volume discretisation process. Eq. 3.5
is formulated without linearisation of non-linear terms (none-method). The mixing energy parameter
λ, in the most general form λlocal, always stems from the previous time-step. The homogeneous and
global λ-approaches are contained within the matrix system (3.5), since the additional term with ∇λn

vanishes in this case. Improved implicitness, and therefore enhanced stability [1], can be achieved by
linearisation of the Ginzburg-Landau potential. For the stable method the potential must be expanded
exactly as

Ψ ( c ) =
1
4

�

c 4 − 2 c 2 + 1
�

=
1
4

�

2β c 2
�

+
1
4

�

c 4 − 2 (β + 1) c 2 + 1
�

(3.2)
⇒ Ψ ′

�

c n+1, c n
�

= β c n+1 +Ψ ′ ( c n)− β c n with Ψ ′ ( c n) = ( c n)3 − c n, (3.6)

in order to be consistent with restriction (3.3). The optimal discretisation scheme follows from (3.4) as

Ψ ′
�

c n+1, c n
�

=
1
2

�

3 ( c n)2 − 1
�

c n+1 −
1
2

�

( c n)3 + c n
�

. (3.7)
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The implicit terms can now be transferred to the off-diagonal coupling entry of the chemical potential,
viz.

(

¹∂t c º− ¹κ∇2Φº = −∇·(u c )n

¹λ∇2 c º− λn

ε2 β¹ c º+ ¹Φº = λn

ε2 (Ψ ′ ( c n)− β c n)−∇λn · ∇ c n
(3.8)

and

(

¹∂t c º− ¹κ∇2Φº = −∇·(u c )n

¹λ∇2 c º− λn

ε2
1
2

�

3 ( c n)2 − 1
�

¹ c º+ ¹Φº = −λ
n

ε2
1
2

�

( c n)3 + c n
�

−∇λn · ∇ c n,
(3.9)

where in (3.8) the stable scheme (3.6) and in (3.9) the optimal scheme (3.7) was used to discretize the
Ginzburg-Landau potential.

3.1.3 Non-Linear Wall Potential

To complete the system of equations the boundary condition (2.22c) needs to be discretised using the
same linearisation methods. The surface energy density fw is therefore rewritten by introducing a non-
linear wall potential Ψw ( c ) as

fw ( c ) =
σ cosθe

2

�

c 3 − 3 c
2

�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ Ψw( c )

+
σsA+σsB

2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
const.

. (3.10)

Form this general form, one can see the close relation to Young’s law (2.8). The wall potential allows for
a smooth transition over both pure phases A and B, since Ψw ∈ [−1,1] monotonously for c ∈ [−1,1].
The stable linearisation is done in the following way to be consistent with restriction (3.3):

Ψw ( c ) =
1
2

�

c 3 − 3 c
�

=
3
4
β c 2 +

1
2

�

c 3 − 3 c
�

−
3
4
β c 2

(3.2)
⇒ Ψ ′w

�

c n+1, c n
�

=
3
2
β c n+1 +Φ′w ( c

n)−
3
2
β c n with Ψ ′w ( c

n) =
3
2

�

( c n)2 − 1
�

. (3.11)

The optimal scheme from (3.4) reads

Ψ ′w
�

c n+1, c n
�

=
3
2

�

c n c n+1 − 1
�

. (3.12)

By comparison, one can see that the optimal scheme is equivalent to choosing β = c n in the stable
approach. The restriction β ≥ 1 needs to be fulfilled only on a global scope for an unconditionally stable
scheme. Optimal dissipation however assumes a local value for β at the cost of time-step restrictions.
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3.1.4 Non-Equilibrium Boundary Condition

The enhanced non-equilibrium boundary condition (2.15) can be written as

λ∂n c + f ′w( c ) +
1
Γw

Dt c = 0, (3.13)

where Dt denotes the material derivative. To discretize (3.13) with improved implicitness a so-called
’convective’ boundary condition is used, viz.

0= λ∂n c +α ( c b − c ref) with ∂n c = ( c b − c c)δ. (3.14)

Therein, c b is the boundary value, c c is the nearest cell-centered value, c ref is a reference value, δ is
the inverse distance between the cell-centers of the cells with values c b and c c and α is some parameter,
denoted as transfer coefficient. c ref will gather all terms of the previous time-step values of c , while c b
is set to be the new value c n+1. The convective boundary condition is transferred to the more popular
mixed-(or Robin-)type boundary condition

c b = w c ref + (1−w) ( c c + gref δ) , (3.15)

with a weighting function w and a reference gradient gref. If c b 6= 0 the convective formulation (3.14)
can be represented by a derived boundary condition

c b =
α

α+λδ
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

w

c ref +
λδ

α+λδ
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

1−w

c c, (3.16)

which is based on the mixed formulation (3.15) with gref ≡ 0. If c b = 0, i.e. an explicit scheme is
preferred, then (3.16) can not result from a reformulation of (3.14). In this case the reference gradient
is used so that gref ≡ ∂n c and the weighting function needs to fulfill w = 1. In order to use the derived
boundary condition (3.16) the parameters α and c ref need to be determined. This is done by equating
the coefficients of (3.13) and (3.14) while setting c b = c n+1. Therefore, the discretisation of f ′w ( c )
from previous sections is summarized in an advantageous representation, viz.

stable : f ′w
�

c n+1, c n
�

=
3
4
σ cosθe β c n+1 −

3
4
σ cosθe

�

1+ β c n − ( c n)2
�

, (3.17)

optimal : f ′w
�

c n+1, c n
�

=
3
4
σ cosθe c n c n+1 −

3
4
σ cosθe, (3.18)

none : f ′w ( c
n) = −

3
4
σ cosθe

�

1− ( c n)2
�

. (3.19)

The material derivative of the phase-field Dt c is semi-(time-)discretised in the general form

γn+1

∆t
c n+1 −

γn c n − γn−1 c n−1 −∆t uw · ∇ c n

∆t
. (3.20)

with time-discretisation dependent parameters γi and the wall velocity uw. For example, the Euler
implicit scheme reads {γn+1,γn,γn−1}= {1,1, 0}. In Tab. 3.1 and Tab. 3.2 the α, c ref and gref parameters
of all linearisation methods are summarized for the non-equilibrium and equilibrium boundary condition.
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Method Transfer Coefficient α Reference Value c ref Reference Gradient gref

stable 3
4σ cosθe β +

γn+1
Γw∆t

1
α

�

3
4σ cosθe

�

1+ β c n − ( c n)2
��

0
+ 1
α

h

γn c n−γn−1 c n−1−∆t uw·∇ c n

Γw∆t

i

optimal 3
4σ cosθe c n + γn+1

Γw∆t
1
α

h

3
4σ cosθe +

γn c n−γn−1 c n−1−∆t uw·∇ c n

Γw∆t

i

0

none 0 0
3
4
σ
λ cosθe

�

1− ( c n)2
�

+γn c n−γn−1 c n−1−∆t uw·∇ c n

λΓw∆t

Table 3.1.: Parameters of the derived non-equilibrium boundary condition (stable and optimal linearisa-
tion method) and fixed-gradient non-equilibrium boundary condition (none).

Method Transfer Coefficient α Reference Value c ref Reference Gradient gref

stable 3
4σ cosθe β

1
β

�

1+ β c n − ( c n)2
�

0

optimal 3
4σ cosθe c n 1

c n 0

none 0 0 3
4
σ
λ cosθe

�

1− ( c n)2
�

Table 3.2.: Parameters of the derived equilibrium boundary condition (stable and optimal linearisation
method) and fixed-gradient equilibrium boundary condition (none).

3.2 Local Mixing Energy Parameter

The local mixing energy parameter model (2.30), derived in this work, has one disadvantage. The
fraction notation will cause instabilities due to its indefiniteness when the gradient of the phase-field
gets close to zero. To avoid numerical instabilities the local cell value λi is modified according to

λi =
3

2
p

2
σε

max
�

|∇ c |2, s
	

i

max
¦

|∇ c |2
2 + Ψ( c )

ε2 , s
©

i

, (3.21)

where the maximum application secures that numerator and denominator never fall below a given value
s > 0. In the pure fluid phases the value of |∇ c |2 would fall below s, which is prevented, so the homoge-
neous mixing energy parameter value is always applied in the bulk. The location of the transfer region
of both λ-models is controlled solely by s, but also difficult to be set for different interface properties. To
improve the handling of the local approach the following choice for the value s will be applied in (3.21):

s ≡ 2
Ψ(δc)
ε2

with 0≤ δc < 1. (3.22)

Eq. 3.22 introduces the correction width δc, which now has the interpretation as the phase-field value
for which the mixing energy parameter models pass over. The analytic structure in (3.22) mimics the
interfacial equilibrium case, i.e. when the terms in the denominator in (3.21) are equal. Additionally,
(3.22) scales with ε, which potentially allows for a general usage of this approach.

20



4 Implementation Details
The implementation details for physical properties like the viscosity and density are shown. Consecu-
tively, the implementation of the mixing energy correction procedure is explained giving also an overview
of the main solution routine of PHASEFIELDFOAM.

4.1 Viscosity Calculation

In this section the viscosity calculation procedure is shown, as it is implemented in the PHASEFIELDFOAM-
solver. Three different viscosity models are available, which determine the face-interpolated dynamic
laminar viscosity µf. A non-trivial task is an appropriate choice of the viscosity models within the solver
framework. In section 4.1.2 two implementation variants are shown. The first one used in chapter 5 and
the second is studied additionally in chapter 6.

4.1.1 Viscosity Models

For a binary immiscible mixture with bulk dynamic laminar viscosities µA,µB, the face-interpolated dy-
namic laminar viscosity µf is calculated from a re-normalized phase-field order parameter on faces, i.e.
ĉ f ∈ [−1, 1]. The latter enforcement is necessary to guarantee non-negative viscosities and densities be-
cause the phase-field parameter naturally shows shifts from its expected values in the bulk phases [26].
Several models for µf are selectable in PHASEFIELDFOAM; the corresponding keywords are given in italic
notation further on. The face-interpolated dynamic laminar viscosity for arithmetic (seriel), harmonic
(parallel) and blended models are given by

seriel / arithmetic : µ
(S)
f =

ĉ f + 1
2

µB −
ĉ f − 1

2
µA, (4.1)

parallel / harmonic : µ
(P)
f =

µAµB

µ
(S)
f

, (4.2)

blended : µ
(B)
f = ηf µ

(P)
f + (1−ηf) µ

(S)
f , (4.3)

where ηf is the face viscosity weighting factor computed by ηf = |n̂DI · n̂Sf|. Therein, n̂DI is the face unit
interfacial normal vector determined using the face-interpolated gradient (∇ c )f and n̂Sf is the standard
face unit normal vector [34].

4.1.2 Viscosity Interpolations

The viscosity models need to be implemented, which has been done in two slightly different ways (ver-
sions) V1 and V2, shown in listings 4.1 and 4.2. Differences between both viscosity interpolation methods
occur in the velocity equation in file UEqn.H and the function to update ρ and µ (updateProperties) in
the class diffuseInterfaceProperties.C.

From V1 to V2 the laplacian expression µ∇·∇u in UEqn.H has changed, precisely the explicit treatment
of the non-constant part of the dynamic viscosity given as a scalar product with u. In V1 the explicit
treatment uses the face-interpolated value µf, while in V2 the cell-centered value µ is used. The function
updateProperties(rho, mu) is called after the solution of the phase-field parameter. In both versions the
density is calculated the same but the dynamic viscosities vary. For version V1 the dynamic viscosity
µ is calculated directly from the bulk values µA and µB, while for version V2 the dynamic viscosity is
calculated via the kinematic viscosity, i.e. µ= ρν.
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// UEqn .H
{

// C a l c u l a t e muf a c co rd ing to
// v i s c o s i t y model
. . .
f vVec torMat r ix UEqn
(

fvm : : ddt ( rho , U)
+ fvm : : d iv ( rhoPhi , U)
− fvm : : l a p l a c i a n (muf , U)
− ( f v c : : grad (U) & fvc : : grad (muf ))
− phaseF ie ld . d i f fRhoPhi (U)

) ;
. . .

}

// d i f f u s e I n t e r f a c e P r o p e r t y . C
updateProper t i e s (

v o l S c a l a r F i e l d& rho ,
v o l S c a l a r F i e l d& mu)

{
// Re−normal ize order parameter C
. . .
rho == (C + s c a l a r (1) )/2 .* rhob_

− (C − s c a l a r (1) )/2 .* rhoa_ ;
mu == (C + s c a l a r (1) )/2 .*mub

− (C − s c a l a r (1) )/2 .*mua;

}

Listing 4.1: Extractions of relevant code segments
for viscosity interpolation method V1.

// UEqn .H
{

// C a l c u l a t e muf a c co rd ing to
// v i s c o s i t y model
. . .
f vVec torMat r ix UEqn
(

fvm : : ddt ( rho , U)
+ fvm : : d iv ( rhoPhi , U)
− fvm : : l a p l a c i a n (muf , U)
− ( f v c : : grad (U) & fvc : : grad (mu))
− phaseF ie ld . d i f fRhoPhi (U)

) ;
. . .

}

// d i f f u s e I n t e r f a c e P r o p e r t y . C
updateProper t i e s (

v o l S c a l a r F i e l d& rho ,
v o l S c a l a r F i e l d& mu)

{
// Re−normal ize order parameter C
. . .
rho == (C + s c a l a r (1) )/2 .* rhob_

− (C − s c a l a r (1) )/2 .* rhoa_ ;
mu == rho *
(

(C + s c a l a r (1) )/2 .* nub_
− (C − s c a l a r (1) )/2 .* nua_

) ;
}

Listing 4.2: Extractions of relevant code segments
for viscosity interpolation method V2.

4.2 Implementation of the Correction Scheme

To make use of the new formulation of the mixing energy parameter it is necessary to understand the
structure of the PHASEFIELDFOAM-solver, presented in appendix A. The basic design principle of PHASE-
FIELDFOAM follows a highly modular approach, which guarantees extensibility. For example the current
Cahn-Hilliard and Allen-Cahn parameters (λ,γ) are encapsulated in the capillaryInterface-class, which
is a concrete representative of the abstract diffuseInterfaceType-class. In this section the extension of
the capillaryInterface-class is described in terms of a global and local approach for the mixing energy
parameter. Subsequently, the new implementation of the λ-field within the solution process is shown.

4.2.1 Extension of the capillaryInterface -class

Following the current design principle, the task to calculate the mixing energy parameter λ is delegated
to a new abstract base class mixingEnergyCorrection, see Fig. 4.1, so that future works can easily add new
correction features. The concrete implementation of the global λ-model (2.25) and the local λ-model
(2.30) is done within the respective derived classes globalCorrection and localCorrection. Endusers can
switch between correction and non-correction via a modified subdictionary, see Listing 4.3, located in the
/constant/phaseFieldProperties dictionary. If no correction is desired, then choosing ’yes’ for ’equilibrium’
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leads to the homogeneous λ-model (2.7) denoted as lambdaEqu, no matter what correction method
is given. Note that the viscosity model is also selected in the capillaryInterface-subdictionary. On a
higher level, the diffuseInterfaceProperty-class is also modified. Similiar to the density and viscosity
recalculation, an additional function updateLambda(lambda) is implemented. The function takes the
mixing energy parameter field by reference and recalculates the latter with the chosen correction method.

diffuseInterfaceProperty [dIP]

# C, rho, mu, pFPdict

- rhoa, rhob, nua, nub, epsilon, tPdict

- deltaN: dimensionedScalar

+ meanViscosity:

enum = {arithmetic, harmonic, blended}

- diffuseInterfaceTypePtr: autoPtr<dIT>
- doubleWellEnergyPtr: autoPtr<dWE>

+ kappa(), lambda(C), gamma() → dIT
+ Psi(C), PsiPrime(C) → dWE
+ updateProperties(rho, mu) → re-calc ρ , µ
+ updateLambda(lambda) → re-calc λ
+ muf(): µf according to meanViscosity
- etaf(): ηf = |n̂DI · n̂Sf|

<<abstract>>
diffuseInterfaceType [dIT]

# C, pFPdict

+ kappa(), lambda(C), gamma()

capillaryInterface

- C, epsilon, kappa, tPdict

+ scalingControls: enum = {none, Yue}

- mixingEnergyCorrectionPtr: autoPtr<mEC>

+ kappa(): κ
+ lambda(C) → mEC
+ gamma(C): calcGamma(C)

- calcKappa(tPdict, pFPdict): Yue ? scale κ
- calcGamma(C): γ= λκ/ε2

<<abstract>>
mixingEnergyCorrection [mEC]

- sigma, epsilon, tPdict

# C, pFPdict

- equilibrium: Switch

+ lambda(C)

+ lambdaEqu(C): λ= 3
2
p

2
σε

globalCorrection

- C, sigma, epsilon

- sampledIsoSurfDict: dictionary

+ lambda(C): equilibrium ? lambdaEqu(C) :

calcLambda(C)

- interfacialSurfaceArea(C): S(C = 0)
- calcLambda(C): λ= σS/

∫

|∇C |/2+Ψ(C)/ε2

localCorrection
- C, sigma, epsilon

- corrWidth: scalar

+ lambda(C): equilibrium ? lambdaEqu(C) :

calcLambda(C)

- algebraicProfile(C): Ψ(C)/ε2

- algebraicProfile(C, scalar s): Ψ(s)/ε2

- calcLambda(C): λ= 3
2
p

2
σε

|∇C |2

0.5|∇C |2+Ψ(C)/ε2

autoPtr<mEC>

autoPtr<dIT>

Figure 4.1.: Restructured capillaryInterface -class extended by the abstract mixingEnergyCorrection -class
which handles multiple λ-models.
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c a p i l l a r y I n t e r f a c e
{

meanFaceViscos i ty " a r i t h me t i c " ; // a l t e r n a t i v e s : " harmonic " , " b l ended "

mixingEnergyCorrect ion
{

// whether to apply c o r r e c t i o n
equ i l i b r ium no ;

// mixing energy parameter model
method g loba lCo r r e c t i on ; // a l t e r n a t i v e : l o c a l C o r r e c t i o n

l o c a l C o r r e c t i o n
{

// range : 0 <= corrWidth < 1
// app ly ing c o r r e c t i o n f o r c e l l s with −corrWidth <= C <= corrWidth
corrWidth 0 .5 ;

}
}

}

Listing 4.3: Subdictionary in /constant/phaseFieldProperties to control the mixing energy correction.

4.2.2 Modifications of the Solution Process

On the top-level of the PHASEFIELDFOAM-solver the mixing energy parameter is introduced as a cell-
centered scalar field and registered as an IOobject in createField.H, see Listing 4.4. Similar to the chemical
potential the boundary treatment is described with a zero-gradient. The phaseField-object, which is the
main interface to handle the phase-field evolution, is extended by the reference of the mixing energy
parameter. In Listing 4.5 the PIMPLE-algorithm of PHASEFIELDFOAM is shown, which is the outer while-
loop. Calculations of the phase-field and mixing energy parameter are encapsulated in phaseFieldEqn.H.
Further modifications to describe the local λ-model are related to the pressure-velocity coupling. In
pEqn.H the recalculation of the volumetric flux φ is extended by the additional momentum source term
s̃mix from derivation (2.35).

s̃mix is denoted as mixSurfaceEnergyDensity and calculated in the class CahnHilliard.C, see Listing 4.6. The
solve-method is extended with the reference for λ and delegated to the abstract base class for different
solution methods, currently coupled and segregated. In the class coupled.C, see Listing 4.7, the concrete
solution method pfFlux is called. Therein, the block matrix system is subsequently created and solved.
After retrieving the solution for the phase-field and chemical potential, the mixing energy parameter
is recalculated by calling the function updateLambda(lambda). If the number of solution cycles of the
phase-field equation is increased (nSubCycles in Listing B.1), the mixing energy parameter is always
recalculated consistently with the updated phase-field.

The classes to describe the contact angle, equilibriumPhaseContactAngleFvPatchScalarField.C and outOfE-
quilibriumPhaseContactAngleFvPatchScalarField.C, have been changed to use the mixing energy parame-
ter field directly from the internal cell-centered values.
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v o l S c a l a r F i e l d lambda
(

IOob jec t
(

" lambda " ,
runTime . timeName () ,
mesh ,
IOob jec t : : NO_READ,
IOob jec t : : AUTO_WRITE

) ,
mesh ,
dimensioned<sca l a r >
(

" 0 " ,
dimForce ,
(3* sigma* eps i l on /

(2*Foam : : s q r t ( 2 . ) ) ) . value ()
) ,
" zeroGradient "

) ;
d i f f u s e I n t e r f a c e E v o l u t i o n

phaseF ie ld (C , phi , Phi , lambda ) ;

Listing 4.4: Top level initialisation of the mixing en-
ergy parameter in createFields.H.

i n t main( i n t argc , char * argv [ ] )
{ . . .

#inc lude " c r e a t e F i e l d s .H"
. . .
while ( runTime . run ( ) )
{ . . .

// −−− SIMPLE loop
while ( pimple . loop ( ) )
{

#inc lude " phaseFieldEqn .H"
#inc lude " UEqn .H"
// −−− PISO loop
while ( pimple . c o r r e c t ( ) )
{

#inc lude " pEqn .H"
} . . .

} . . .
} . . .

}

Listing 4.5: PIMPLE solution routine in phaseField-
Foam.C.

mixSurfaceEnergyDensi ty ()
{ . . .

return
(

f v c : : i n t e r p o l a t e
(

d i f f u s e I n t e r f a c e P r o p _
. P s i ( this−>C())/ sqr ( ep s i l on )

+ 0.5*magSqr( f v c : : grad ( this−>C( ) ) )
)* f v c : : snGrad ( lambda ( ) )

) ;
}
so l ve (

v o l S c a l a r F i e l d& C ,
v o l S c a l a r F i e l d& Phi ,
v o l S c a l a r F i e l d& lambda

)
{

// Return mass f l u x
return
(

CahnHi l l i a rdSo lu t i onP t r_
−>pfFlux (C , phi ( ) , Phi , lambda )

) ;
}

Listing 4.6: Additional momentum source term s̃mix and
solve -method in CahnHilliard.C.

pfF lux (
v o l S c a l a r F i e l d& C ,
const s u r f a c e S c a l a r F i e l d& phi ,
v o l S c a l a r F i e l d& Phi ,
v o l S c a l a r F i e l d& lambda

)
{ . . .

// Create block matr ix system
. . .
// Solve block matr ix system
. . .
// Re t r i eve s o l u t i o n f o r C
// and Phi
. . .
// Re−c a l c u l a t e lambda
d i f f u s e I n t e r f a c e P r o p _

. updateLambda ( lambda ) ;
. . .

}

Listing 4.7: Solution routine for the block
matrix system in coupled.C.
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5 Dynamic Droplet Spreading on a
Super-Hydrophobic Substrate [2]

The simulation of a water droplet with initial velocity impacting on a planar and macroscopically smooth,
super-hydrophobic surface is studied in this chapter. The impact behavior, i.e the motion of the contact
line, can be described by the wetting factor βwet = D/D0, which is the ratio of the current droplet
diameter D on the surface to the initial diameter D0. For comparison, wetting is described in terms of a
dimensionless time τ = tU0/D0, where the simulation time t is linearly shifted if U0 > 0. The setup and
experimental data from Roisman et al. [2] is used for validation.

Additionally to the droplet spreading behavior, phase volume conservation is examined. For a given
phase-field initialization the phase volume conservation error is defined as the relative variation of the
total sum of phase-field-weighted cell volumes, viz.

eV (τ)≡
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A conservative method would ensure eV = 0 at any time since the temporal derivative of the phase-field
vanishes, viz.
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= 0.

The advantage of using (5.1) is that it respects any small shifts of the phase-field variable, i.e. slight
variations of c bulk = ±1. Especially at high local curvature the surrounding droplet cells show c ¦ 1.
The shifts are an intrinsic consequence of the phase-field formulation and known in literature [26].

5.1 Case Setup

5.1.1 Physical Parameter

The fluid properties of the water droplet and the surrounding air and the corresponding surface tension
are given in Tab. 5.1. Densities and kinematic viscosities are chosen to match the real physical situation
for a constant temperature of 20 ◦C. The superhydrophobic surface, reported in [2], is made of coated
glass with measured advancing and receding contact angles θadv = 156° and θrec = 134°, respectively. It is
assumed that the surface is macroscopically smooth without any microscopic structure. The equilibrium
contact angle θe is calculated as the mean value of θadv and θrec, which gives θe = 145°.

The initial droplet diameter is D0 = 2.04 mm and the impact is perpendicular to the surface with initial
velocity U0 = 0.83m s−1. In Fig. 5.1 the case setup is shown with parametrized dimensions and boundary
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ρair 1.2 kg m−3

ρwater 998.2 kg m−3

νair 1.550× 10−5 m2 s−1

νwater 1.007× 10−6 m2 s−1

σ 0.073 kg s−2

Table 5.1.: Fluid properties of air
and water at 20 ◦C.

Figure 5.1.: Initial 2D-axis-symmetric case setup
with chosen fixed domain dimensions
and boundary notations.

notation. This work uses 2D-axis-symmetric simulations only to drastically reduce the computational
cost. On the bottom wall, where the droplet is impacting, the phaseContactAngle-boundary condition
for the phase-field parameter is applied, which can be either based on (3.1) or (3.2), respectively. All
other boundaries guarantee zero-gradient of the phase-field and the chemical potential. The top and the
side of the domain is modeled as an open boundary, which is a combination of a fixed zero-pressure and
zero-gradient for the velocity. The wall-velocity of the bottom is zero and the pressure is modeled with
vanishing flux.

5.1.2 Adaptive Mesh

The computational cost of solving the Navier-Stokes Cahn-Hilliard Systems highly depends on the num-
ber of variables, i.e. the number of control volumes. In phase-field simulations of binary immiscible fluids
the resolution of the interface is a matter of particular interest in contrast to far-field bulk properties.
An efficient way to focus on the interfacial resolution can be achieved by the use of the local dynamic
adaptive mesh refinement technique, which has been implemented for 2D and 3D at the Technische
Universität Darmstadt in FOAM-EXTEND 3.2. A coarse unstructured mesh, see Fig. 5.2, is refined with a
chosen number of refinement levels Nref. The whole domain is wedge-shaped with an opening angle of
5° and one cell in y-direction. Interface cells are determined and labeled by a certain criterion, here
using the surface normal gradient with a threshold value of 0.1. Each labeled cell is successively split
into four cells in this 2D-case until the target refinement level is reached (Fig. 5.3). At least two cells
of one refinement level are maintained in each direction for a smoother cell size transition. During a
simulation a refinement (or unrefinement) process is set to take place every 50th iteration. After this
process the fluxes need to be recalculated, hence refinement intervals are chosen as large as possible.
Since the adaptive mesh is frozen between refinement steps, a large interval can be achieved with an
appropriate number of layers around the interface, here eight layers are chosen.

The resolution of the interface is expressed by the number of interfacial cells NI u 4D0Ch/h, where Ch is
the Cahn number defined as the ratio of the capillary width and the initial droplet, i.e. Ch = ε/D0 and
h denotes the mesh spacing of the finest level. In the x-z-plane the mesh with dimension W × H should
have equal mesh spacing in each direction, thus

h=
W D0

nx2Nref

!
=

H D0

nz2Nref
,
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Figure 5.2.: Complete view of the quasi-2D initial
unstructured mesh with 5 refinement
levels.

Figure 5.3.: Droplet cutout of the initial mesh with
5 refinements for Ch = 0.01 and 8 cells
in interfacial direction.

where nx and nz are the number of control volumes (CVs) on the coarsest level in x- and z-direction. Note
that OPENFOAM works with unstructured meshes, so hexahedral CVs neighboring refined hexahedral CVs
are always polyhedra. The interfacial resolution of the adaptive mesh can be generally expressed by

NI = 22+Nref
nx

W
Ch

!
= 22+Nref

nz

H
Ch. (5.2)

Additional to the refinement of the interface, the bottom is kept on the finest level as well. Along the
axis a refined box with level Nref − 2 and dimension 2D0 × 4ε is applied to accelerate the refinement
process. In Tab. 5.2 an overview of all employed meshes is given with corresponding reduction of total
cell numbers compared to non-adaptive meshing. The domain size is optimized for NI = 8 and Nref = 5
at Ch = 0.01. This means that the high and low Cahn number can be set by Nref = 6 or Nref = 4 with the
same interfacial resolution of eight cells. Besides NI = 8 and NI = 16 the number of interfacial cells is
rounded down, compare (5.2). Running on a single processor on a standard laptop, the execution time
for different interfacial resolution were about 4 hours for NI = 4, 9 hours for NI = 8 and 23 hours for
NI = 16.

NI nx nz Nref #CV initial reduction in %

4 13 18 5 5841 -97.6

6 19 27 5 9489 -98.2

8 25 35 5 12797 -98.6

10 32 44 5 17074 -98.8

12 38 53 5 21031 -99.0

14 22 31 6 23932 -99.1

16 25 35 6 27377 -99.2

Table 5.2.: Setup of mesh properties for different interfacial resolutions with initial numbers of control
volumes (#CV) and reduction of total cell amount compared to a corresponding non-adaptive
mesh.
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5.1.3 Solution Process

The solution procedure uses the PIMPLE-algorithm, see Listing 4.5. From preliminary investigation the
PIMPLE-properties are set so that the velocity and pressure field after one refinement of the mesh are
recalculated as fast as possible from the altered flux field. The number of outer corrections for the
SIMPLE loop is set to three. Within a PIMPLE-iteration the phase-field is solved once. The pressure,
like-wise within the PISO-algorithm, is solved once. The mesh refinement results in a higher mesh non-
orthogonality, i.e. an angular deviation of face normal vectors and vectors connecting the cell centers.
Such mesh induced errors are reduced by applying two non-orthogonal correction steps within a PISO-
loop.

The time-step of the simulations is kept at ∆t = 0.5 µs, so that the Courant number Co= |u| ∗∆t/h is of
the order of 0.05. The choice of the time-step is influenced by the huge variance of cell volumes due to the
mesh refinement. The ration of maximal over minimal cell volume varies from Vmax/Vmin = 0.82× 106

to Vmax/Vmin = 12.85× 106 for NI = 4 and NI = 16, respectively. The condition number of the solution
matrix declines with increasing Vmax/Vmin. Additionally to usage of preconditioners, a smaller time-step
improves the solution process. In App. B the complete solution and scheme dictionaries can be found.

5.2 Simulation Campaign

A summary of different models, methods and parameters within the phase-field context is given, which
are available in the PHASEFIELDFOAM-solver. Thereafter, the simulation campaign for the experiment by
Roisman et al. [2] is described.

5.2.1 Parameter Space

The different models and methods are shown in Tab. 5.3. All simulations for the present test case are
restricted to the viscosity interpolation method V1 and viscosity model harmonic. During the present
work, the coupled solution method was improved and the boundary conditions were consistently discre-
tised with the different linearisation methods. New features are also the global and local mixing energy
parameter models. In Tab. 5.4 the parameters of the phase-field model are presented with correspond-
ing values applied in this work. So far, Ch, NI and M have been the standard phase-field parameters in
simulations, the latter often described by the Péclet number. Additionally, the relaxation parameter G is
used for the non-equilibrium boundary condition and the correction width δc needs to be specified for
the local mixing energy parameter model.

Model / Method Representation

solution procedure of the Cahn-Hilliard system coupled (3.5), [segregated]

linearisation method of non-linear potentials stable (3.2), optimal (3.4), none

boundary condition of c on solid surfaces equilibrium (2.22c), non-equilibrium (2.23)

mixing energy parameter homogeneous (2.7), global (2.25), local (2.30)

viscosity interpolation method V1 (Listing 4.1), [V2]

viscosity model harmonic (4.2), [arithmetic, blended]

Table 5.3.: Overview of different models and methods applied in the phase-field model for the present
test case. Additionally available yet unused models are shown in square brackets.
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Parameter Description Values

Ch Cahn number defined by Ch =
ε

D0
{ 0.005, 0.01, 0.02 }

NI
number of control volumes in interfacial direction /
interfacial resolution { 4, 6, 8, 10, 12, 14, 16 }

M mobility factor for scaling law κ= Mε2 { 1/4, 1/2, 1, 2, 4, 8, 16, 32 }

G relaxation factor for scaling law Γw = G · 109 s kg−1 { 1/16, 1/8, 1/4, 1/2, 1 }

δc
correction width, local λ-model applied for cells with
c corr = 0±δc

{ 0.5, 0.6, 0.7, 0.8 }

Table 5.4.: Overview of different parameters of the phase-field model with brief description and studied
values for the present test case.

5.2.2 Parameter Study

Since the parameter space is huge an appropriate sequence of simulations is needed. In the course of
investigating the wetting factor evolution, the PHASEFIELDFOAM-solver is tested with the coupled solution
procedure for the first time. There are three different linearisation methods available; it is decided to
use the stable-method as default. In addition, the equilibrium boundary condition for the phase-field is
used, of course linearised with the stable-method again. The stable-method is expected to be superior
to non-linearisation but also more independent of a chosen time-step. If not declared otherwise, the
homogeneous mixing energy parameter model is applied.

In section 5.3.1 the mobility is varied while having a moderate Cahn number and moderate to high
interfacial resolution. From comparison with experimental data, a fitting mobility factor is determined
and used further in subsequent studies. The grid convergence is subject to section 5.3.2, where lower
and higher numbers of interfacial cells are applied. This is followed by a variation of the interfacial
thickness in section 5.3.3, where a lower and higher Cahn number is tested.

So far the standard, often encountered parameters of a phase-field have been tested and the mobility has
been set. Since the case in [2] is way more dynamic than letting a droplet fall without initial velocity, it
is interesting to see the influence of the non-equilibrium boundary condition with relaxation in section
5.3.4. Additionally, a comparison of the different solution methods is given in section 5.3.5.

The main idea to deal with dynamic, out-of-equilibrium behavior of the diffuse-interface is to apply
a new model for the mixing energy parameter. In section 5.3.6 the global λ-model by Yue is tested.
Subsequently in section 5.3.7 the local λ-model is used, which has been developed in this work. Global
and local model are directly compared with the homogeneous model using the same phase-field model-
parameters. The local model is tested with respect to the correction width, the latter local-specific
parameter deals with indefiniteness of the model.

Besides the wetting factor, additional information is gained from the droplet shape analysis in section
5.3.8. Therein, a selection of previous model is chosen and compared at two selected time-steps.

30



5.3 Simulation Results

5.3.1 Variation of Mobility

The first simulations show the basic phenomena regarding the whole wetting process, which will be
representative for all subsequent sections. The variation of the mobility is done for the solution procedure
coupled together with the linearisation method stable (3.8) and equilibrium boundary condition (3.2).
The Cahn number and interfacial resolution are fixed to Ch = 0.01 and NI = 8.

On the left hand side of Fig. 5.4 the temporal evolution of wetting factors for different mobility factors
are shown together with experimental data. Different wetting stages can be seen, which all simulations
have in common. From initialization to τ ≈ D0/U0 = 1 the spreading phase is observed, where the
droplet is wetting the surface until a maximal wetting factor is reached, here about βwet,max ≈ 1.56. This
is followed by a receding phase of the droplet. Finally at about τ ≈ 4 a total re-bounce is observed,
where the droplet is no more in contact with the surface. The receding phase last about 2.5− 3-times as
long as the spreading phase.

(a) (b)

(c) (d)

Figure 5.4.: Wetting factors (a,c) and corresponding phase volume conservation error (b,d) for different
mobilities. Common simulation parameters are Ch = 0.01, NI = 8, solution with coupled-
stable and equilibrium boundary condition.

In Fig. 5.5 the simulated shape evolution of the water droplet with M = 1 is shown. After initialization
the droplet starts forming a rim close at the contact line. No bubble entrapment is observed on the
bottom. As the rim grows at the outskirt area more and more water volume is gathered within it. This
results in the formation of a thin film (lamella) around the central axis between τ = 1 and τ = 1.5.
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The lamella does not break up, so no dry-out on the central axis is observed. In the receding phase
the droplet forms a pyramidal structure and is lastly re-bounced vertically from the bottom in a jet-like
structure.

Figure 5.5.: Shape evolution of the water droplet in air for M = 1, Ch = 0.01, NI = 8, solution with
coupled-stable and equilibrium boundary condition.

For all simulated mobility factors there is very good agreement of βwet with the experimental data in
the spreading phase. The mobility shows only little influence on the temporal spreading evolution on
a macroscopic view until τ = 1.5. The insets in Fig. 5.4a and 5.4c reveal that with about M = 2 or
M = 4 the droplet spreading velocity, i.e. the velocity of the moving contact line, has a maximum value.
In the receding phase from τ = 1.5 to τ = 3.5 the simulations show different behavior, but are still
in agreement with the last experimental data point. Reducing the mobility, Fig. 5.4a, leads to a faster
receding of the droplet and the variance to the experimental data increases. The experimental data
predict a linear behavior during the receding phase. The best fitting trend is observed for M = 2 and
M = 4. Increasing the mobility further, Fig. 5.4c, shows a characteristic break-in for M ≥ 8 around
τ ≈ 2.2. The reason for that is a complete dry-out of the lamella and the corresponding formation
of a torus-shaped droplet, shown in Fig. 5.6 with simulation M = 16 for example. When the torus is
retracting towards the axis a bubble entrapment is observed. The bubble is displaced by the water phase
and moves towards the contact line. At about τ= 2.05 the bubble is released to the surrounding air and
the contact line is snapping back so that the wetting factor is again in agreement with the experimental
trend.

Figure 5.6.: Central dry-out and torus formation for M = 16, Ch = 0.01, NI = 8, solution with coupled-
stable and equilibrium boundary condition.

Phase volume conservation errors for different mobility factors are shown in Fig. 5.4b and 5.4d. None of
the simulations are accurate enough to ensure conservation up to the 7th digit. However, reducing the
mobility leads to smaller variances. Looking at M = 0.25 the spreading phase shows a slight artificial
increase of the water phase (eV > 0), while in the receding phase the air phase increases (eV < 0).
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Until M = 4 the phase volume conservation error is limited within the simulated range. Increasing the
mobility further a divergent behavior is observed.

Concluding, it has been shown that using the homogeneous mixing energy parameter model the mobility
factor M = 2 is in good agreement with the experiment in both the spreading and receding phase, while
ensuring phase volume conservation.

5.3.2 Variation of Interfacial Resolution

The next step is to look at the variation of interfacial resolution, i.e. the number of interfacial cells, for
given Ch = 0.01 and M = 2. The choice of NI = 8 as the default resolution in the previous section is
based on literature survey and expected as an appropriate, not to say high resolution.

(a) (b)

Figure 5.7.: Wetting factors (a) and corresponding phase volume conservation error (b) for different
numbers of interfacial cells. Common simulation parameters are Ch = 0.01, M = 2, solu-
tion with coupled-stable and equilibrium boundary condition.

In Fig. 5.7a the number of interfacial cells was varied from NI = 4 to NI = 16. If only NI = 4 interfacial
cells are used the simulation is clearly under-resolved as the wetting factor deviates even in the spreading
phase. Comparing NI = 6 and NI = 8 the spreading phases are both in agreement with experimental data
but NI = 6 underestimates the wetting factor in the receding phase. The overall influence of increasing
the interfacial resolution is that it accelerates the contact line velocity in the spreading phase so that
a higher βwet,max value is reached. All simulations show a hierarchical behavior without intersection
and for NI ≥ 8 a contraction around τ ≈ 2.5. In the contraction zone the simulations are most likely
synchronized compared to initialization, so the variance from different βwet,max was compensated. After
the contraction zone the wetting factors start diverging again with faster droplet retraction and total
re-bounce for lower NI. The variance from NI = 14 to NI = 16 is very small, so for a converged solution
NI = 14 is necessary. Comparing NI = 8 and NI = 14 the spreading phase is better described by NI = 8
and slightly overestimated by NI = 14. During the receding phase NI = 14 is in better agreement with
experiment passing through all confidence intervals. After the contraction zone the experimental data
is again well matched for NI = 8. Regarding the phase volume conservation error, Fig. 5.7b, a higher
interfacial resolution leads to a higher variance of eV from zero. The variance is more than twice as large
for NI = 16 as for NI = 8.

In conclusion, simulating dynamic droplet spreading with an interfacial resolution of NI = 8 does not
guarantee a fully converged simulation although the wetting factor has been showed to be in good agree-
ment with the experiment. Less dynamic test cases calculated with PHASEFIELDFOAM and 4−8 interfacial
cells have been studied in [18] showing a good compromise between accuracy and computational cost.
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5.3.3 Variation of Interfacial Thickness

With the Cahn number Ch one controls the capillary width ε and therefore the effective interfacial thick-
ness. The latter limits the role of the diffuse-interface properties like the mobility. In this section the
mobility law κ = Mε2 is investigated for a fixed interfacial resolution NI = 8. The Cahn number is
controlled by the number of refinements, for example Nref = 6 for Ch = 0.005.

(a) (b)

Figure 5.8.: Wetting factors (a) and corresponding phase volume conservation error (b) for different
Cahn numbers and mobilities. Common simulation parameters are NI = 8, solution with
coupled-stable and equilibrium boundary condition.

In Fig. 5.8a three different Cahn numbers are shown with M = 2, the latter choice based from previous
sections. All Ch are in good agreement with experimental data in the spreading phase. The maximum
wetting factor is slightly lower for Ch = 0.005 and higher for Ch = 0.02 compared to the default value
Ch = 0.01 from previous sections. From τ ≈ 1.3 to τ ≈ 1.9 the wetting factors for Ch = 0.01 and
Ch = 0.005 lie one above the other until the droplet recedes faster for lower Ch. The simulations with
medium and high Ch are in better agreement with the experiment for the later receding phase. The
small break-in at τ = 2.8 for Ch = 0.005 results from a small bubble entrapment about four cell height
(≈ 20 µm). The minimum height of the lamella is of the same height and close to break-up but no torus
is formed. The phase volume conservation error, Fig. 5.8b, shows a higher variance of the high Cahn
number. The low Cahn number has the lowest observed variance of eV from zero so far.

Another simulation was done for M = 8 with low Cahn number so that the same mobility is applied
compared to M = 2 with Ch = 0.01. This run shows again a variance from experiment at τ = 2.5. The
total re-bounce of the droplet occurs even faster in this setup. The phase volume conservation error gets
worse for higher mobilities with fixed Ch = 0.005, just as seen in previous sections for Ch = 0.01.

Concluding, it has been shown that reducing the interfacial thickness does not necessarily improve the
conformity of phase-field simulation and experiment in dynamic cases.

5.3.4 Non-Equilibrium Boundary Condition

The non-equilibrium boundary condition is applied in this section, where the wall relaxation parameter
is expressed by Γw = G · 109 s kg−1 with a relaxation factor G. The resolution is fixed to Ch = 0.01 and
NI = 8 and the mobility parameter is M = 2.

In Fig. 5.9 the wetting factors for decreasing relaxation factors are shown. For comparison, G → ∞
belongs to the simulation with equilibrium boundary condition. Using a wall relaxation parameter of
Γw = 109 s kg−1 is very close to the equilibrium case. The main influence of reducing G is seen in the
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Figure 5.9.: Wetting factors for different relaxation factors. Common simulation parameters are Ch =
0.01, NI = 8, M = 2, solution with coupled-stable and non-equilibrium boundary condition.

spreading phase. The contact line moves faster and the maximum wetting factor is higher. If G < 0.25 the
wetting factor is overestimated during the spreading phase. The variance of the wetting factors around
βwet,max for different G is approximately maintained during the receding phase. The non-equilibrium
boundary condition shows less influence on the retraction behavior of the droplet. The phase volume
conservation error of all simulations is limited by eV < 2× 10−7 in agreement with Fig. 5.8b for M = 2.

In conclusion, it is not necessary to apply the non-equilibrium boundary condition for the present test
case. The non-equilibrium boundary condition affects only the spreading phase and leads to a faster
wetting of the surface. However the spreading phase is already well described when the equilibrium
boundary condition is used.

5.3.5 Comparison of Solution Methods

The default solution method so far was the coupled approach with stable linearisation of the (wall)
chemical potential. In this section the optimal and none linearisation method are tested with different
time-steps ∆t ≤ 0.5 µs, Ch = 0.01, NI = 8 and M = 2.

Figure 5.10.: Wetting factors for different time-steps and linearisation methods. Common simulation
parameters are Ch = 0.01, NI = 8, M = 2, solution with coupled and equilibrium boundary
condition.
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Fig. 5.10 shows that the optimal and none method have the same temporal evolution of the wetting
factor, i.e. the same contact line velocity. Reducing the time-step to ∆t = 0.1 µs has no consequence
for the optimal linearisation. While the stable method describes well the spreading phase, the optimal
and none methods lead to an overestimation of the wetting factor and hence its maximum value. In the
receding phase one has approximately the same variance between stable and the remaining simulations
at a given dimensionless time. The phase volume conservation error of all simulations is very similar and
bounded by eV < 2× 10−7.

Concluding, it has been shown that selecting the stable linearisation method as default for the given test
case is justified.

5.3.6 Global Mixing Energy Parameter Model

So far the homogeneous mixing energy parameter has been considered, which is now compared with
the global mixing energy parameter model of Yue et al. [1], viz.

λglobal = σ
S| c=0
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The initial value λ0 is the homogeneous lambda model, while the initial iso-surface area S0 with re-
spect to c = 0 is derived analytically from the initial droplet dimensions within the 5°-wedge-shaped
domain. The numerator in (5.3) is expressed in terms of the Helmholtz free energy (2.2) divided by the
homogeneous mixing energy parameter and associated with its starting value, for simplicity.

Figure 5.11.: Wetting factors for homogeneous and global mixing energy parameter model and different
mobility factors. Common simulation parameters are Ch = 0.01, NI = 8, solution with
coupled-stable and equilibrium boundary condition.

In Fig. 5.11 the temporal evolution of the wetting factor for global and homogeneous mixing energy
parameter model is shown with selected mobility factors. Only negligible differences are observed if
both models are compared for the same mobility. The progress of the global mixing energy parameter,
Fig. 5.12a, first shows that at initialization λglobal is about 1.5% higher compared to the homogeneous
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model. The maximal variance depends on the mobility and occurs during the spreading phase around
τ≈ 0.5. Within the studied range of M a maximal variance of 5% of the global mixing energy parameter
is observed.

Variances of λglobal from the homogeneous model are controlled by the ratio S/F . The iso-surface area
in Fig. 5.12b and Helmholtz free energy in Fig. 5.12c are fluctuating around the initial value in time.
During the spreading phase until τ = 0.8 the iso-surfaces of all three mobilities are approximately the
same. This does not hold for the Helmholtz free energy ratio F/F0 in the same time-interval. The
variance of F from initial value gets higher with increased mobility.

(a) (b) (c)

Figure 5.12.: Relative temporal evolution of (a) the global mixing energy parameter, (b) the iso-surface
area for c = 0 and (c) the Helmholtz free energy. Common simulation parameters are
Ch = 0.01, NI = 8, M = 2, solution with coupled-stable and equilibrium boundary condition.

In conclusion, the global mixing energy parameter has only negligible influence on the wetting factor
for the given test case. From this point of view it is recommend to use the homogeneous model instead,
in order to avoid the interpolation of the iso-contour surface S, which showed a slight increase of com-
putational time. Yue et al. have applied the global model for droplets deforming in shear flow with a
constant interfacial thickness of ε = 0.01 and different droplet dimensions [1]. They have seen weaker
effects of the adjusted λ-model when ε is smaller relative to the drop size, i.e. when the Cahn number
is low. The Cahn number may be too low in the present case. The main reason for the weak effects of
the global model on the wetting factor is that the variance to the homogeneous model is too low. An
additional finding is that simulated droplets with high mobility have lower free surface energy compared
to simulated droplets with low mobility.

5.3.7 Local Mixing Energy Parameter Model

The local mixing energy parameter model is defined using a limiting value s ≡ Ψ (δc)/ε2 with the
correction width δc. The interfacial region where the corrected inhomogeneous λ-value is applied ranges
from c corr = 0±δc.

In Fig. 5.13a the influence of increasing δc is shown in comparison to the homogeneous λ-model. For
δc = 0.5 no variance occur during the spreading phase, while for δc > 0.6 the contact line moves faster
as the experiment has shown, leading to high variances for δc = 0.8. From τ = 1 to τ = 2.5 it can be
seen that although different maximal wetting factors are reached, all simulations are contracting again
in the late receding phase, being in good agreement with the experiment. Looking at the phase volume
conservation error, Fig. 5.13b the simulations with local mixing energy parameter have even lower total
variation eV compared to the homogeneous λ-model.

Regarding the evolution of the local minimum and maximum mixing energy parameter, Fig. 5.14, one
first notices that at initialization λmin is more than 10% lower and λmax is more than 8% higher compared
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(a) (b)

Figure 5.13.: Wetting factors (a) and corresponding phase volume conservation error (b) for different
correction widths compared to the homogeneous λ-model. Common simulation param-
eters are Ch = 0.01, NI = 8, solution method coupled-stable with equilibrium boundary
condition.

(a) (b)

Figure 5.14.: Relative minimum (a) and maximum (b) mixing energy parameter compared to the homo-
geneous λ-model. Common simulation parameters are Ch = 0.01, NI = 8, solution method
coupled-stable with equilibrium boundary condition.

to the homogeneous λ-model. Overall a hierarchical process is observed. The maximum total variance
from 1.0 is found lower for smaller δc. Peaks in λmin occur for δc = 0.8, drastically reducing the mixing
energy parameter locally. For δc = 0.6, respectively δc = 0.5, which have wetting factor progresses close
to the homogeneous λ-model, the lowest λlocal is −40% and the highest λlocal is +20% compared to λ.
In comparison λglobal shows a maximal total variance of 5%.

In Fig. 5.15 the temporal evolution of the mixing energy parameter field is shown. For all snapshots the
scaling is fixed to λlocal = λ± 1%. Blue areas indicate lower and red areas indicate higher λlocal-values.
Right after initialization (τ = 0.2) most parts of the droplet are in free fall, which is respected by a
smaller λlocal, since the interface is widened. At the contact line and the successively forming rim λlocal
is increased. Before the thin lamella is formed (τ = 1) the pressure around the axis increases, which
tightens the interface leading to a higher λlocal. During τ = 1.5 and τ = 2 the maximum wetting factor
was exceeded and the overall λ-value is lowered in the receding phase Similarly to the rim the forming
tip of the jet (τ= 2.5) shows higher λ. After the total re-bounce the total variation of the mixing energy
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parameter from the homogeneous equilibrium model is lowered compared to the spreading phase. In
summary using the local λ-model, an increased λlocal is observed at the moving contact line and at high
local curvature.

Figure 5.15.: In-homogeneous local mixing parameter field λlocal at different times. The scaling is set to
λlocal = λ±1% where red indicates higher and blue indicates lower values compared to the
homogeneous parameter λ in gray. Simulation with Ch = 0.01, NI = 8, M = 2, δc = 0.5,
solution with coupled-stable and equilibrium boundary condition.

Concluding, it has been shown that the local mixing energy parameter can describe the evolution of
the wetting factor as appropriate as the homogeneous model, if the correction width is set properly. A
natural choice of δc = 0.9, which would refer to the 90% mark of total phase-field variation in interfacial
normal direction, can be declared not possible. The value δc = 0.5 is chosen for future investigation.

5.3.8 Droplet Shape for different Mixing Energy Parameter Models

The droplet shape analysis is another important mean to validate the diffuse-interface model. Unfor-
tunately no experimental data is given in [2], so in this section a qualitative comparison between the
different mixing energy parameter models is investigated at two selected time-steps. For the homoge-
neous λ-model the Cahn number varies from Ch = 0.02 to Ch = 0.005 and the resolution varies from
NI = 8 to NI = 16. Both the global and local λ-model have Ch = 0.01 and NI = 8, the latter additionally
with δc = 0.5 and δc = 0.6.

(a) λ, Ch = 0.01 (b) λ, NI = 8 (c) λglobal, Ch = 0.01, NI = 8 (d) λlocal, Ch = 0.01, NI = 8

Figure 5.16.: Iso-contour lines for c = 0 at τ= 2 for various model parameters. The mobility factor is set
to M = 2 and the solution method is coupled-stable with equilibrium boundary condition.
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In Fig. 5.16 the droplet shapes, i.e. the iso-contour lines for c = 0, at τ = 2 for different parameters
are shown. The droplet is in the receding phase, for all models the wetting factor is βwet ≈ 1. Larger
discrepancies occur for the droplet shape. For the homogeneous model, lowering Ch speeds up the
formation of the tip along the z-axis. Increasing NI has the opposite effect, the tip formation is inhibited.
Analogous to the wetting factor progress, the droplet shapes using global and homogeneous λ-models
with corresponding resolutions are very much alike. The local mixing energy parameter model inhibits
the tip formation. This effect is stronger the larger the correction width is chosen.

The situation after the total re-bounce at τ = 4 is shown in Fig. 5.17. The general shape resembles
a bowling pin, an elongated waist and spherical tip separated by a strangling. Again the global and
homogeneous models are much alike. The delay in tip formation for higher NI has proceeded from
τ = 2. For low Cahn number the droplet dimension in z-direction is slightly larger. Also for Ch =
0.005 the droplet shape is different and looks more like a bottle, which resembles a large scale capillary
wave around z = 2.5mm. The droplet shapes for the local mixing energy parameter model are further
stretched in z-direction. The tip forming delay from τ = 2 for δc = 0.6 is now reversed and the tip is
over 1mm ahead of the other λ-models. Increasing δc further leads to the detachment of the spherical
tip into a separated secondary droplet.

(a) λ, Ch = 0.01 (b) λ, NI = 8 (c) λglobal, Ch = 0.01, NI = 8 (d) λlocal, Ch = 0.01, NI = 8

Figure 5.17.: Iso-contour lines for c = 0 at τ= 4 for various model parameters. The mobility factor is set
to M = 2 and the solution method is coupled-stable with equilibrium boundary condition.

In conclusion, a majority of studied models have very similar droplet shape evolutions, especially no
difference was observed for homogeneous and global λ-models. Interesting findings are the faster tip
formation for low Cahn numbers and the droplet stretching effect of the local model, which increases
with δc.
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6 Shape Analysis of Droplet Spreading on a
Super-Hydrophobic Substrate [3]

The simulation of a spherical water droplet with initial velocity impacting on a planar and macroscopi-
cally smooth, super-hydrophobic surface is studied in this chapter. Experimental data from Yun [3] are
used, which are intentionally close to the experiment from Roisman in chapter 5 with similar droplet
dimension, velocity and contact angle. In this sense, both experiments complement each other so that a
complete validation of the droplet behavior, i.e. the contact line motion and droplet shape evolution, is
achieved.

The objective in this chapter is to compare the simulated droplet shapes, i.e. the iso-contour lines for
c = 0, with experimental high-speed images taken from [3], shown in Fig. 6.1.

Figure 6.1.: High-speed images of a water drop (D0 = 1.97 mm, U0 = 1.0 ms−1, We = ρD0U2
0/σ = 27)

impacting on a super-hydrophobic substrate (θe = 160± 3°) from Yun [3]. Additional length
scales were added, which stem from graphic analysis.

Additionally to the original figure, length scales in terms of the initial droplet diameter D0 have been
added in Fig. 6.1, which were derived from graphic analysis, i.e. manually. For t = 8 ms and t = 9.2ms
the drop was outside the range of the high-speed camera, so the corresponding length scales can only
give a rough approximation.

6.1 Case Setup

Yun’s experiment is close to Roismans’s setup in Sec. 5.1, so in the following only the modifications are
described. The initial droplet diameter is lowered to D0 = 1.97mm and the impact velocity perpendicular
to the surface is increased to U0 = 1.0 ms−1. As a consequence the 2D axis-symmetric computational
domain size, shown in Fig. 6.2, is increased to a height of 8D0. In [3] a contact angle of 160±3° has been
measured. Accordingly, the equilibrium contact angle for the phaseContactAngle boundary condition is
set to θe = 160°. Properties of the studied meshes are shown in Tab. 6.1. The reduction of the total
amount of control volumes (#CV) is drastic due to the use of adaptive mesh refinement, see section
5.1.2. The solution process is left unchanged, details can be found in section 5.1.3.

6.2 Simulation Campaign

A summary of different models, methods and parameters within the phase-field context is given, which
are available in the PHASEFIELDFOAM-solver and relevant for the present test case. Thereafter, the simula-
tion campaign for the experiment by Yun [3] is described.
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Figure 6.2.: Initial 2D-axis-symmetric case setup
with chosen fixed domain dimensions
and boundary notations.

NI nx nz Nref #CV init. reduction

8 25 50 5 13172 -99.0%

16 25 50 6 27752 -99.5%

Table 6.1.: Setup of mesh properties for differ-
ent interfacial resolutions.

6.2.1 Parameter Space

The different models and methods are shown in Tab. 6.2. Additionally to the study of the previous
chapter, the viscosity interpolation method within the PHASEFIELDFOAM-solver was updated to a new
version V2. In Tab. 5.4 the parameters of the phase-field model are presented with corresponding values
applied in the present test case. The parameter space is reduced based on the findings of the previous
chapter.

Model / Method Representation

solution procedure of the Cahn-Hilliard system coupled (3.5), [segregated]

linearisation method of non-linear potentials stable (3.2), optimal (3.4), [none]

boundary condition of c on solid surfaces equilibrium (2.22c), [non-equilibrium]

mixing energy parameter homogeneous (2.7), global (2.25), local (2.30)

viscosity interpolation method V1 (Listing 4.1), V2 (Listing 4.2)

viscosity model arithmetic (4.1), harmonic (4.2), blended (4.3)

Table 6.2.: Overview of different models and methods applied in the phase-field model for the present
test case. Additionally available yet unused models are shown in square brackets.

Parameter Description Values

Ch Cahn number defined by Ch =
ε

D0
{ 0.005, 0.01 }

NI
number of control volumes in interfacial direction /
interfacial resolution { 8, 16 }

M mobility factor for scaling law κ= Mε2 { 2 }

δc
correction width, local λ-model applied for cells with
c corr = 0±δc

{ 0.5, 0.6, }

Table 6.3.: Overview of different parameters of the phase-field model with brief description and studied
values for the present test case.
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6.2.2 Parameter Study

The experiment by Yun [3] is considered as a complement to the previous chapter by validating the
droplet shape evolution, rather than the wetting factor. In order to ensure comparability of both test
cases, in section 6.3.1 the coupled solution procedure is applied with stable and optimal linearisation
to begin with. Most of the parameters stem from the previous test case, which were found in good
agreement for stable linearisation. Analyzing the contact line motion an appropriate linearisation method
will be chosen for further simulations.

In section 6.3.2 the simulated droplet shapes are validated for different mixing energy parameter models
using approximated experimental droplet dimensions from graphic analysis. The viscosity calculation so
far is done with interpolation method V1 and model harmonic. Only a limited phase-field parameter
space for Cahn number, mobility and interfacial resolution is used.

Instead of expanding the phase-field parameter space further, in section 6.3.3 the new viscosity inter-
polation method V2 is validated, which allows the use of further viscosity models like arithmetic and
blended in the present dynamic droplet spreading setup. Differences of the single viscosity models are
examined and a comparison with the previous viscosity interpolation is given.

Finally, in section 6.3.4 a direction comparison of experimental and simulated droplet shapes is given.
The influence of the interfacial thickness is studied for all viscosity models and interpolations combina-
tions from sections 6.3.2 and 6.3.3.

6.3 Simulation Results

6.3.1 Comparison of Solution Methods

The first simulations are used to compare the two linearisation methods stable and optimal. The fixed
parameters are chosen based on the findings of the previous chapter, where good agreement of the
contact line motion with experimental data has been found for a comparable case setup. The fixed
parameters are Ch = 0.01 and M = 2 as well as an interfacial resolution of at least NI ≥ 8. The
solution procedure is coupled with equilibrium boundary condition and the viscosity interpolation is the
old version V1 with viscosity model harmonic. The viscosity treatment is the same as in the previous
chapter.

Figure 6.3.: Temporal evolution of iso-contour lines ( c = 0) for different linearisation methods and inter-
facial resolutions. Common simulation parameters are Ch = 0.01, M = 2 and the solution
method is coupled with equilibrium boundary condition and viscosity model V1-harmonic.
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In Fig. 6.3 the temporal evolution of iso-contour lines for c = 0 is shown governing approximately the
late spreading phase to mid receding phase. A large discrepancy is observed for the contact line motion
of the stable and optimal linearisation with NI = 8. The receding velocity of the contact line for stable
is faster, hence for t ≥ 3ms the contact line undercuts the rim leading to an hovered water volume. No
undercuts are observed for optimal as well as in Fig. 5.16, the latter using the stable method. The tip
formation at t = 4 ms is also faster for stable so that the droplet dimension along the z-axis at t = 6ms
is larger. The stable method is also tested with NI = 16. Increasing the interfacial resolution reduces the
undercut tendency and the overall droplet shapes can be describes as an interlude between the NI = 8
simulations, slightly more similar to optimal. Regarding the apparent contact angle one notices that the
optimal method shows approximately a lower value as 160°.

Concluding, the stable method, which was the best choice for the experiment by Roisman [2], now has
an unexpected influence on the contact line. The undercut seems to be nonphysical, at least no evidence
can be seen in Fig. 6.1. Compared to the previous chapter, the equilibrium contact angle is increased
by 15°, which most likely the main reason for the failure of the stable method. A higher interfacial
resolution helped to reduce the undercut tendency, but it is to be pointed out that such high number
of interfacial cells are not encountered in literature to the authors knowledge. Recall that the domain
is 2D axis-symmetric, so that cell volumes increase in x-direction. The increased tip formation of the
stable method is a consequence of the undercut, since a higher amount of water gathers closer to the
axis enhancing the displacement. To avoid the influence of a nonphysical contact line motion on the
transient characteristic of the droplet shape, the linearisation method of the present test case is set to
optimal further on.

6.3.2 Comparison of Mixing Energy Parameter Models

The simulated droplet shape evolution is compared with experimental results in this section. The phase-
field parameters are set to Ch = 0.01, NI = 8 and M = 2. The solution procedure is coupled-optimal with
equilibrium boundary condition and the viscosity interpolation is V1 with viscosity model harmonic.

In Fig. 6.4 the droplet shape evolution for homogeneous, global and local mixing energy parameter
models are shown, the latter with two different correction widths δc. The different times correspond to
Fig. 6.1. To improve the comparison between simulations and experiment, red lines where added which
refer to the experimental droplet dimensions. First it is observed that homogeneous and global λ-model
have thoroughly conformable droplet shapes in the simulated time interval. At t = 2 ms all simulated
droplets form a flat disc, the dimension of which is in good agreement with the experimental high-speed
image and approximately shows the maximum spreading in x-direction. At t = 4ms the experiment
indicates a faster receding of the droplet, where the local model is less consistent but the variance
decreases with lower δc. The disc has thickened in z-direction and no tip is observed experimentally. For
the homogeneous model the tip formation has started, but this is not visible in a 360° domain. At t = 6ms
the transient characteristic of the experimental droplet is not matched, all simulations are about 0.8mm
behind in z-direction. Between t = 8ms and t = 9.2ms the total re-bounce of all simulated droplets
occur. The variance of homogeneous and local λ-model is maximal at the last time. In z-direction the
droplet is lengthened for λlocal, which increases for higher δc. The bottom-wall distance is slightly too low
for all simulations, while the upper bounds show that the homogeneous model is in better agreement.
However, caution has to be taken for the last two images because the upper bounds were extrapolated,
since the experimental droplets were out of the camera range.

In conclusion, no tested λ-model has captured the transient characteristic of the experiment accurately
for this given test case with Ch = 0.01. The real droplet recedes faster and is more stretched before
and more compressed after the total re-bound, the latter inducing capillary waves. However a good
overall resemblance is observed, which is a promising start for further parameter or model variations.
The local λ-model leads to a significant stretching tendency after the total re-bound, similarly to Fig.
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Figure 6.4.: Temporal evolution of iso-contour lines ( c = 0) for different mixing energy parameter mod-
els. Common simulation parameters are Ch = 0.01, NI = 8 and M = 2 and the solution
method is coupled-optimal with equilibrium boundary condition and viscosity model V1-
harmonic Sketched red lines with length D0/2 mark the experimental droplet dimensions
derived from graphic analysis (Fig. 6.1).

5.17d. In agreement with the test case from of the previous chapter, almost no difference between the
homogeneous and global λ-model is observed.

6.3.3 Comparison of Viscosity Models

So far in this work the viscosity interpolation V1 was studied with harmonic viscosity calculation. This
choice was made because V1 together with arithmetic or blended viscosity models showed nonphysical
velocity fields, where artificial air-phase peaks occurred. In the course of this work the viscosity in-
terpolation has been updated to version V2 and test simulations have shown that the artificial velocity
vanishes. In this section three viscosity models applied with V2 are studied and the phase-field parame-
ters are set to Ch = 0.01, NI = 8 and M = 2. The solution procedure is coupled-optimal with equilibrium
boundary condition.

In Fig. 6.5 the droplet shape evolution for arithmetic, harmonic and blended viscosity models are shown.
Similar to Fig. 6.4, the simulations are temporarily behind the experiment for t = 4ms and t = 6 ms.
The main difference is that after the total re-bounce the bottom wall distance is higher and the tip is
more spherically shaped. Comparing the viscosity models with each other one observes different shape
behavior. For example at t = 6 ms the blended model shows a capillary wave around z = 2mm, which
is however not present in the experiment. For t ≥ 6 ms the bottom part of the arithmetic model is
more spherical. Overall the harmonic and blended models are more alike compared to arithmetic. For
arithmetic the bottleneck in the last image is placed approximately at the same height as seen in the
experiment, while the bottlenecks of the other models are located higher in z-direction.

A closer look around the maximum spreading and starting receding phase of the droplet is shown in
Fig. 6.6. Although all viscosity models have approximately the same wetting factor, i.e. position of the
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Figure 6.5.: Temporal evolution of iso-contour lines ( c = 0) for different viscosity models. Common sim-
ulation parameters are Ch = 0.01, NI = 8 and M = 2, homogeneous λ-model, viscosity inter-
polation method V2 and the solution method is coupled-optimal with equilibrium boundary
condition. Sketched red lines with length D0/2 mark the experimental droplet dimensions
derived from graphic analysis (Fig. 6.1).

Figure 6.6.: Shape evolution of lamella and rim for different viscosity models. Common simulation pa-
rameters are Ch = 0.01, NI = 8 and M = 2, homogeneous λ-model, viscosity interpolation
method V2 and the solution method is coupled-optimal with equilibrium boundary condi-
tion.

contact line of c = 0, rim and lamella are shaped differently. The arithmetic model leads to a round and
less complex shape, while the other models look much alike and lead to an additional wave between rim
and lamella.

Concluding, it has been demonstrated that the new viscosity interpolation V2 with arithmetic viscosity
calculation is the best candidate to bring the simulated droplet shape into agreement with the experiment
for Ch = 0.01. Yet work is to do to improve and match the transient characteristic. As a next step it
is recommend to study a smaller Ch, since in Fig. 5.16 a finding has been that this enhances the tip
formation.

6.3.4 Variation of Interfacial Thickness

In this section a direct comparison of experimental and simulated droplet shapes is shown with varying
interfacial thickness expressed by the Cahn number Ch = ε/D0. The value Ch = 0.01 is denoted as
medium, while Ch = 0.005 is denoted as low Cahn number. For all simulations the common setting is
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NI = 8 interfacial cells and mobility parameter M = 2, coupled solution procedure, equilibrium boundary
condition and optimal linearisation method. Using the homogeneous mixing energy parameter model,
all viscosity settings from this work are tested; viscosity interpolation V1 with harmonic viscosity model
in Fig. 6.7 and V2 with arithmetic, harmonic and blended in Fig. 6.8. Additionally, the local mixing energy
parameter model is tested, see Fig. 6.10.

(a) Ch = 0.01 (b) Ch = 0.005

Figure 6.7.: Direct comparison of experimental (left) and simulated (right) droplet shapes at different
times for two Cahn numbers (a) and (b). Common simulation parameters are NI = 8 and
M = 2 with homogeneous λ-model, viscosity model V1-harmonic, solution method coupled-
optimal and equilibrium boundary condition.

In Fig. 6.7a and 6.7b simulated results for medium and low Cahn numbers are compared with experimen-
tal high-speed images from [3] using the same viscosity model as in chapter 5. At t = 6 ms the simulated
droplet tip at low Ch has improved and is close to the experimental shape forming a bottleneck in contrast
to medium Ch. One notices the undercut at the bottom, which resulted from a torus-formation (dry-out
of the thin lamella with bubble entrapment moving in radial direction) at t = 3.8ms and should not be
confused with undercuts using the coupled-stable solution procedure in section 6.3.1. At t = 8ms the
experimental droplet forms a round-like main bottom part governed with low Ch, while with medium
Ch the bottom part is bottle-shaped and has a misplaced bottle-neck. At t = 9.2 ms there is uncertainty
regarding the experimental tip behavior. The simulation with low Ch shows a droplet detachment and
still misses any capillary waves. However the distance to the bottom is well matched.

In Fig. 6.8a and 6.8b the direct experimental comparison is done for the arithmetic viscosity model with
interpolation V2. Overall the influence of Ch on the droplet shape is negligible for the observed times.
At t = 6ms the droplet has close resemblance with the experiment, yet the transient is not matched
correctly. The round-like main bottom part is well reproduced.

Comparable results are observed in Fig. 6.8c and 6.8d for V2-blended. However, one can deduce that the
shape for low Ch has gotten worse because the transient characteristic seems to have fallen behind the
one with medium Ch. This can be seen by the dimension in z-direction at t = 6 ms and the bottle-neck
position at t = 8ms.

Lowering the Cahn number has huge influence for the V2-harmonic model shown in Fig. 6.8a and 6.8b.
Similarly to V1-harmonic (Fig. 6.7b), the transient characteristic of the tip formation at low Ch has
been improved, now matching exactly the experimental z-dimension. In the tip formation process small
droplets are ejected with low Ch. At t = 8 ms simulated and experimentally observable droplet shapes
are in very good agreement. However at t = 9.2ms still no small-scale capillary waves occur in the mid
part of the droplet. A large-scale capillary wave forms from tip to mid-part.
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(a) arithmetic, Ch = 0.01 (b) arithmetic, Ch = 0.005

(c) blended, Ch = 0.01 (d) blended, Ch = 0.005

(e) harmonic, Ch = 0.01 (f) harmonic, Ch = 0.005

Figure 6.8.: Direct comparison of experimental (left) and simulated (right) droplet shapes at different
times for two Cahn numbers and three viscosity models. Common simulation parameters are
NI = 8 and M = 2 with homogeneous λ-model, viscosity interpolation V2, solution method
coupled-optimal and equilibrium boundary condition.
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In Fig. 6.9 the tip formation process for the simulation with V2-harmonic model from Fig. 6.8f is shown.
Around t = 4.4 ms a small volume of water is accelerates along the z-axis forming a very sharp peak. At
t = 5.2ms a small secondary droplet is detached, while the remaining tip only consists of one inner bulk
cells over a length of about D0/2. Subsequently, the droplet is stretched further and the tip gets thinned
until the interface collapses around t = 5.5 ms and multiple small droplets are formed. After t = 5.8ms
the detachments stop and a spherical tip starts to form.

Figure 6.9.: Temporal evolution of the tip formation for the V2-harmonic viscosity model with Ch = 0.005,
NI = 8 and M = 2 with homogeneous λ-model, coupled-optimal solution procedure and
equilibrium boundary condition.

The local mixing energy parameter model with δc = 0.5 and V2-harmonic is used in Fig. 6.10a and 6.10b.
One can observe that for medium Ch the tip formation at t = 6 ms is temporally behind the experiment
and has close resemblance with Fig. 6.8. Later on the droplet is slightly more stretched in z-direction
detaching a large spherical drop. For low Ch the stretching is increased, however, the drop detachment
is delayed. Compared to Fig. 6.8f the overall cohesion of the interface is increased, and no tiny satellite
droplets are observed. Especially at t = 8 ms the observed droplet shape is in very good agreement with
the experiment.

In Fig. 6.11 the droplet shape evolution is shown from t = 9.5ms to t = 10ms after detachment of a
satellite drop. The detached spherical drop is moving upwards, while the droplet tip is slightly retracting
downwards. One can observe a small capillary wave forming around the main droplet tip. However,
only one small capillary wave is formed, while the experiment shows multiple ones at lower times.

In conclusion, it has been shown that the influence of the interfacial thickness depends on the viscosity
model. Using the harmonic model with interpolation method V1 or V2 and low Cahn number, the
plasticity of the droplet is drastically increased leading finally to a matched transient characteristic for
the present test case. However, this comes with droplet detachments, which can not be validated due to
the limited experimental data range. The behavior of the droplet tip is very interesting and the harmonic
model has suggested that there might be more behind to study on. The local mixing energy parameter
model has showed the potential to increase the interfacial cohesion using the harmonic viscosity model
with low Cahn number. This avoids the very sharp tip formation with tiny satellite drops, which might
not be physical. If the experiment would show a clear spherical tip at t = 8ms, then λlocal helps to match
the stretched experimental main bottom part even with medium Cahn number.
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(a) Ch = 0.01 (b) Ch = 0.005

Figure 6.10.: Direct comparison of experimental (left) and simulated (right) droplet shapes at different
times for two Cahn numbers (a) and (b). Common simulation parameters are NI = 8 and
M = 2, λlocal-model with δc = 0.5, viscosity model V2-harmonic, solution method coupled-
optimal and equilibrium boundary condition.

Figure 6.11.: Evolution of a small capillary on the main droplet tip after drop detachment. Common
simulation parameters are Ch = 0.005, NI = 8 and M = 2, λlocal-model with δc = 0.5, vis-
cosity model V2-harmonic, coupled-optimal solution procedure and equilibrium boundary
condition.
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7 Executive Summary
Regarding the first fundamental questions it has been demonstrated that it is possible to use the diffuse-
interface phase-field model for dynamic wetting processes on super-hydrophobic substrates and get good
agreement with experiments. It has been shown in this work that super-hydrophobicity can be modelled
by a single parameter, namely the equilibrium contact angle θe. Neither micro-structures nor additional
contact line motion theory, like artificial pinning in the VOF context [35], were necessary for the given
test cases. Applying only the natural boundary condition (2.10) for the phase-field on fluid-solid surfaces,
the evolution of the wetting factor for a millimeter-sized droplet with about Re ≈ 2000 can be well
described; not only for the spreading phase but also for the receding phase. The mobility law (2.14) can
be assumed to give the right scaling with respect to the capillary width. Relatively small modifications
were needed for the mobility parameter to optimize the wetting factor, even setting the default value
results into good experimental agreement.

An interesting finding for the diffuse-interface contact line motion, i.e. the motion of the iso-contour
line c = 0, is that lowering the Cahn number or the mobility leads to a faster receding droplet after
the maximum wetting factor was reached. The lower the interfacial thickness or the mobility parameter,
the higher the influence of advection processes in relation to diffusion processes, described also by the
Péclet number. Hence, a well chosen amount of diffusion has been seen to effectively hinder the droplet
receding, resulting in better agreement with experiments.

Using a homogeneous λ-model it is a challenging task to match the transient droplet shape charateristic
precisely, beginning with the droplet tip formation until several milliseconds after the total re-bounce.
The simulated interfaces have seemed to be too rigid and less flexible as in the experiment, the latter
even showing small capillary waves. However, several aspects of the simulated droplet shapes have
been seen to be in good agreement; for example the main bottom part of the droplet or the droplet-
bottom distance after total re-bounce. A basic idea to improve the transient characteristic is to reduce
the interfacial thickness, thereby increasing advection influences. Compared to other works [17,18,36],
which use diffuse-interface phase-field models for rapid spreading, a fairly low Cahn number has been
tested. However, notable transient improvements on the droplet deformability have only been seen for
the harmonic viscosity model, leading to a very sharp tip, which is probably nonphysical.

Regarding the second fundamental questions, two additional mixing energy parameter models have been
tested. For the simulated droplet dynamics the global approach (2.25) by Yue et al. [1] has been seen
to have negligible influence on the wetting process and the droplet shape. Hence, it is recommended to
not use the global approach in dynamic cases, since the computational cost is increased by the run-time
iso-contour calculation. A promising new approach for the mixing energy parameter is the local model
(2.30), derived in this work based on the global approach. In the local model the correction width
δc occurs as an additional parameter. If the correction width is properly chosen, here δc = 0.5, the
simulated wetting process for the local model has been in good agreement with the experiment, closely
resembling the homogeneous λ-model. An improvement in droplet shape deformability in terms of
stretching has been seen for the local model compared to a homogeneous λ-model. The local model has
also shown a cohesive effect for the interface, reducing the sharp tips of the harmonic viscosity model.
The best results have been seen for the harmonic viscosity model in combination with a local mixing
energy parameter and Ch = 0.005, which is a recommended setup to start further investigations.

Several numerical and technical improvements for the PHASEFIELDFOAM-solver in FOAM-EXTEND have been
tested in this work. The adaptive mesh refinement technique has been the most relevant improvement,
drastically reducing the computational cost. Adaptive mesh refinement should be used for any simu-
lations so that the computational domain can be chosen large enough to allow for a velocity close to
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zero on bulk-boundaries. The coupled solution procedure for the fourth-order Cahn-Hilliard equation
(2.21c) has been successfully validated for the present dynamic case. A return to the less consistent
segregated method is therefore not recommended. The linearisation methods for non-linear terms in
the Cahn-Hilliard phase-field model have shown a conflict. On the one hand, the simulations regarding
Roisman’s wetting experiment [2] have been in best agreement using the stable-method. On the other
hand, Yun’s droplet shape analysis [3] have led to a failure of the stable-method resulting in undercuts
of the diffuse-interface contact line. The undercuts have only appeared in Yun’s experiment indicating
that the stable-method can fail if the equilibrium contact angle is too large. The optimal-method has
shown a feasible contact line motion in Yun’s droplet shape analysis and is therefore recommended as
the default linearisation method for instance. The non-equilibrium bondary condition (2.15) has been
studied with respect to the wetting factor evolution. Influence has only been observed for the spread-
ing phase, leading to a faster contact line motion when relaxation processes take longer. However, the
spreading phase is already well described using the equilibrium boundary condition (2.10), the latter
being clearly recommended. The phase volume conservation error (5.1) has been introduced and is
potentially a good validation measure. It is emphasized to include the phase volume conservation error
into the PHASEFIELDFOAM message output.
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8 Future Work
Before starting new work with the diffuse-interface phase-field model, it is very important to validate the
viscosity interpolation model (4.1) and (4.2) with multiple test cases ranging from low to high interface
dynamics. Previous works with the PHASEFIELDFOAM-solver [18, 19] have used the arithmetic model,
which is now complemented by the harmonic and blended approach, the latter has often been used in the
VOF context [34]. Since all viscosity models have shown individual influences when varying the Cahn
number, each model should be subject to future work.

An ideal experimental setup for dynamic droplet spreading should include validation data for the wetting
factor with much more data points, especially around the maximum spreading radius. Additionally,
high-speed images or video material to validate the droplet shapes in side-view should be included,
particularly capturing the droplet apex. A bottom view of the rapid wetting process completes the
experiment; a suggestion with a high-speed color camera is shown in [37].

A continuation of this work is to validate again the wetting factor for the different linearisation meth-
ods using the best matching viscosity model from a preliminary study. Using high equilibrium contact
angles, the question would be whether the optimal linearisation can appropriately describe the wetting
factor progress or, perhaps with a new viscosity model, the undercuts by the stable linearisation van-
ish. Regarding low equilibrium contact angles, there is experimental evidence [35] that the wetting
factor forms a plateau around the maximum spread, which indicates a natural pinning process. Does
the present phase-field model show such pinning on hydrophilic substrates using the local λ-model and
the simple assumption of an equilibrium contact angle? The resulting in a non-constant effective contact
angle during simulations is an excellent feature of the phase-field method and should be shown in terms
of the Capillary number and compared with models from the VOF context, see [38]. In terms of data
evaluation, the contact line velocity should be accessible by sampling and matching both the velocity
field and phase-field parameter.

The droplet domain initialization can be modified. In the present work the droplet has been set to be
in equilibrium and in direct contact with the solid substrate, which is nonphysical in real applications.
The direct contact has been used because it has been seen in pre-studies that an initial droplet height
enforces a bubble entrapment on the bottom patch. Although there is experimental evidence of bubble
entrapment [37], the simulations have shown that the bubble dimensions are a magnitude to large.
Hence, the phase-field model must ensure that the wetting process of the first contact of the droplet with
the surface gets faster, so that less air can be trapped. Bottom-view high-speed images are needed for
validation because side-views have been seen to have no insight on what is happening around the axis.
Regarding the lamella behavior, there is expermental evidence of the formation of toroidal water drops,
i.e. a dry-out of the lamella, after impacting on solid surfaces [39]. According to [39], the dynamics in
the present case must show toroidal droplets during the spreading phase, which have only been seen in
simulations with high mobilities. Other initialization ideas for isothermal systems are the variation of
the impact angle or droplet impact on a shallow liquid layer [40].

Regarding the PHASEFIELDFOAM-solver the adaptive mesh refinement currently does not allow the use of
function objects, which are crucial for run-time calculations. Probably there is a re-numbering of cell
addresses after a refinement step, which should be fixed.
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Appendices
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A Overall Structure of PHASEFIELDFOAM
The class structure of the master-branch of PHASEFIELDFOAM is shown, implemented in FOAM-EXTEND 3.2
or 4.0. On this page the adaption of the diffuse-interface Cahn-Hilliard phase-field equations is shown.
The next page shows the embedding of the phase-field equation into the highly modular solver.

<<abstract>>
phaseFieldEquation

- Phi, phi, rhoa, rhob, nua, nub, tPdict

- diffuseInterfacePropPtr: autoPtr<dIP>

+ diffRhoPhi(U), massSource(C),

phiSurfaceEnergyDensity(C),

solve(C, Phi)

AllenCahn
- rhoa, rhob

- diffuseInterfaceProp: dIP&
- nMaxIter: label

+ diffRhoPhi(U): 0
+ massSource(C): spd
+ phiSurfaceEnergyDensity(C): (Φ∇ c ) |f
+ solve(C, Phi): ρφ
- lagrMultiplier(gamma, C): λLagr.

AC

CahnHilliard
- rhoa, rhob

- diffuseInterfaceProp: dIP&
- CahnHilliardSolutionPtr: autoPtr<CHS>

diffRhoPhi(U) : −∇ · (u ⊗ 〈J〉)
massSource(C) : 0
phiSurfaceEnergyDensity(C): (Φ∇ c ) |f
solve(C, Phi) → CHS::pfFlux

<<abstract>>
CahnHilliardSolution [CHS]

# C, Phi, phi, pFPdict

- rhoa, rhob, nua, nub, tPdict

- diffuseInterfaceProp: dIP&

pfFlux(C, phi, Phi)

segregated

- rhoa, rhob

- diffuseInterfaceProp: dIP&

+ pfFlux(C, phi, Phi): ρφ

coupled

- rhoa, rhob

- diffuseInterfaceProp: dIP&
+ linMethods: enum = {lpStable, lpOptimal}

- beta: scalar ≥ 1.0

+ pfFlux(C, phi, Phi): ρφ

autoPtr<CHS>
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Application: phaseFieldFoam

created fields (IOObjects):
C, Phi, pd, p, rho, mu, gh: volScalarField

U: volVectorField

phi, rhoPhi, ghf: surfaceScalarField

dictionaries (IOObjects):
transportProperties [tPdict] including

rhoa, rhob, nua, nub, sigma: dim.Scalar

phaseFieldProperties [pFPdict] including

epsilon, kappa: dimensionedScalar

diffuseInterfaceEvolution
- eqnPtr : autoPtr<pFE>

+ diffuseInterfaceProp(),

diffRhoPhi(U), massSource(C),

phiSurfaceEnergyDensity(C),

solve(C, Phi) → pFE

diffuseInterfaceProperty [dIP]

# C, rho, mu, pFPdict

- rhoa, rhob, nua, nub, epsilon, tPdict

- deltaN: dimensionedScalar

- etaf: surfaceScalarField

- diffuseInterfaceTypePtr: autoPtr<dIT>
- doubleWellEnergyPtr: autoPtr<dWE>

+ kappa(), lambda(C), gamma() → dIT
+ Psi(C), PsiPrime(C) → dWE
+ updateProperties(rho, mu) → re-average ρ , µ
+ muf(): µf = ηf ·µ

p
f + (1−ηf) ·µs

f
+ viscosityCorrect() → calcInterfaceVisco...
- calcInterfaceViscosityWeight() → ηf = |n̂DI ·nSf|

<<abstract>>
diffuseInterfaceType [dIT]

# C, pFPdict

+ kappa(), lambda(C), gamma()

capillaryInterface

- C, sigma, epsilon, kappa, tPdict

+ scalingControls: enum = {none, Yue}

- lambda, gamma: dimensionedScalar

- mixingEnergyCorr [mEC]: Switch

+ kappa(): κ
+ lambda(C): calcLambda(C)

+ gamma(): γ= λκ/ε2

- calcKappa(tPdict, pFPdict)

→ Yue ? scale κ, re-calc γ
- calcLambda(C): mEC ? λcorr : λ

<<abstract>>
doubleWellEnergy [dWE]

# C, pFPdict

+ Psi(C), PsiPrime(C)

GinzburgLandau

- C

- Psi, PsiPrime: volScalarField

+ Psi(C): calcPsi(C)

+ PsiPrime(C): calcPsiPrime(C)

- calcPsi(C): Ψ = ( c 2 − 1)2/4
- calcPsiPrime(C): Ψ ′ = c ( c 2−1)

<<abstract>>
phaseFieldEquation [pFE]

CahnHilliard AllenCahn

<<abstract>>
CahnHilliardSolution

segregated coupled

1

friend

autoPtr<pFE>

autoPtr<dIP>

autoPtr<dIT> autoPtr<dWE>

via
pFE
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B Solution and Scheme Dictionaries

s o l v e r s
{

pcorr
{

s o l v e r PCG;
precond i t i one r DIC ;
to l e rance 1e−12;
r e l T o l 0;

}

pd
{

s o l v e r PCG;
precond i t i one r DIC ;
to l e rance 1e−10;
r e l T o l 0;

}

pdFinal
{

s o l v e r PCG;
precond i t i one r
{

precond i t i one r GAMG;
nVcyc les 5;
to l e rance 1e−07;
r e l T o l 0;
smoother DICGaussSeidel ;
nSmoothingSteps 4;
nPreSweeps 2;
nPostSweeps 1;
nFinestSweeps 1;
cacheAgglomeration f a l se ;
n C e l l s I n C o a r s e s t L e v e l 100;
agglomerator a l g e b r a i c P a i r ;
mergeLevels 1;

}
to l e rance 1e−12;
r e l T o l 0;
minI te r 2;
maxIter 50;

}

U
{

s o l v e r BiCGStab ;
p recond i t i one r DILU ;
to l e rance 1e−06;
r e l T o l 0;

}

C
{

s o l v e r PBiCG ;
precond i t i one r DILU ;
to l e rance 1e−12;
r e l T o l 0;

}

Ccoupled
{

s o l v e r GMRES;
nD i re c t i ons 5;
p recond i t i one r Cholesky ;
t o l e rance 1e−12;
r e l T o l 0;
minI te r 2;
maxIter 500;

} ;
}

PIMPLE
{

momentumPredictor no ;
nOuterCorrectors 3;
nCorrec tor s 1;
nNonOrthogonalCorrectors 2;
nSubCycles 1;
pdRefCel l 0;
pRefValue 0;
pdRefValue 0;
c o r r e c t P h i true ;
checkMeshCourantNo true ;

}

Listing B.1: fvSolution dictionary in /system.

57



ddtSchemes
{

default Euler ;
}

gradSchemes
{

default Gauss l i n e a r skewCorrected 0 .5 ;
}

divSchemes
{

default none ;
div ( phi , C) Gauss skewCorrected Gamma 0.25;
div ( rho*phi ,U) Gauss skewCorrected l im i tedL inearV 1;

}

laplac ianSchemes
{

default Gauss l i n e a r co r rec t ed ;
}

in terpo la t ionSchemes
{

default l i n e a r ;
}

snGradSchemes
{

default co r rec t ed ;
}

f luxRequi red
{

default no ;
Phi ;
pd ;
pcorr ;
C ;

}

Listing B.2: fvSchemes dictionary in /system.
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